

| RESEARCH ARTICLE**Generative AI for Supplier Relationship Management: Applications, Challenges, and Future Directions****Sanjay Vijay Mhaskey***APICS certified supply chain management professional, ERP specialist, FL, USA***Corresponding Author:** Sanjay Vijay Mhaskey, **E-mail:** svmhaskey@yahoo.co.in**| ABSTRACT**

This research paper explores the transformative potential of generative artificial intelligence (AI) in supplier relationship management (SRM). As organizations face increasingly complex global supply chains, generative AI offers promising capabilities to enhance communication, optimize negotiations, predict supplier performance, and mitigate risks. This paper examines current applications, implementation challenges, and future directions for generative AI in SRM. By analyzing emerging use cases and technological developments, we identify key opportunities for organizations to leverage generative AI in creating more resilient, efficient, and collaborative supplier relationships. While significant challenges remain, including data privacy concerns and integration with existing systems, the strategic deployment of generative AI in SRM represents a competitive advantage for forward-thinking organizations. This study investigates the transformative role of generative artificial intelligence (AI) in supplier relationship management (SRM). With the growing complexity of global supply chains, generative AI presents significant opportunities to enhance communication, streamline negotiations, predict supplier performance, and mitigate risks. The paper delves into current applications of generative AI, the challenges encountered during implementation, and potential future directions for SRM. By examining innovative use cases and recent technological advancements, we highlight critical opportunities for organizations to harness generative AI to foster more resilient, efficient, and collaborative relationships with suppliers. Despite notable challenges, such as data privacy issues and integrating AI with existing systems, the strategic application of generative AI in SRM can provide a distinct competitive edge for progressive organizations.

| KEYWORDS

Generative AI, SRM, LLM, GAN, Simulations, Machine Learning

| ARTICLE INFORMATION**ACCEPTED:** 01 January 2026**PUBLISHED:** 12 January 2026**DOI:** [10.32996/jcsts.2026.5.3.1](https://doi.org/10.32996/jcsts.2026.5.3.1)**1. Introduction**

Supplier Relationship Management (SRM) encompasses a strategic, process-oriented, and cross-functional approach that creates value for both buyers and sellers. It involves managing business-to-business relationships to co-create value and increase shareholder value. SRM is considered a critical business process due to competitive pressures, the need for sustainability and risk management, cost efficiency, and the development of closer relationships with key suppliers for innovation and market success [1].

Generative AI is a branch of artificial intelligence that uses unsupervised and semi-supervised algorithms to enable computers to generate new content in response to prompts. It learns patterns from extensive datasets to produce outputs that resemble the training data, encompassing various modalities such as text, images, audio, and video. This approach contrasts with conventional methods that focus on analyzing existing data, as generative AI aims to create original and imaginative content [2]. Although there has been significant emphasis on generative AI in customer-facing roles, its ability to transform supplier management functions has not been thoroughly investigated.

Copyright: © 2026 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) 4.0 license (<https://creativecommons.org/licenses/by/4.0/>). Published by Al-Kindi Centre for Research and Development, London, United Kingdom.

This paper aims to fill the existing gap by examining how generative AI technologies—including large language models (LLMs), generative adversarial networks (GANs), and multimodal AI systems—can enhance supplier relationship management (SRM) processes, relationships, and outcomes. This paper examines current applications, implementation challenges, and ethical considerations and proposes future directions for integrating generative AI in SRM contexts.

2. Theoretical Background

2.1 Supplier Relationship Management

SRM evolved from traditional procurement practices to become a strategic function focused on creating mutual value through collaborative supplier relationships[3]. Modern SRM encompasses supplier selection, performance evaluation, risk management, collaboration, development, and continuous improvement [4].

Supplier Relationship Management (SRM) has evolved from traditional procurement into a strategic function focused on long-term relationships and value creation. Unlike conventional methods, SRM employs a cross-functional approach, integrating areas such as marketing, sales, and logistics. It emphasizes co-creating value with suppliers through collaboration on innovation and development rather than merely negotiating prices [5]. SRM involves segmenting suppliers based on their strategic importance and addressing concerns related to risk management and sustainability. Additionally, it introduces performance metrics to support continuous improvement, moving beyond the traditional focus on cost reduction [1].

The literature identifies several key dimensions of effective SRM, such as -

- Strategic alignment between buyer and supplier objectives
- Information sharing and communication quality
- Collaborative problem-solving and innovation
- Performance measurement and feedback
- Relationship-specific investments
- Trust and commitment

Traditional Supplier Relationship Management (SRM) systems have primarily relied on structured data and rule-driven decision-making, which has limited their ability to handle unstructured data or adapt to dynamic changes. This situation has opened the door to AI-driven solutions that can overcome these challenges [6].

2.2 Generative AI Technologies

Generative AI encompasses machine learning methods that create new content, identify patterns, and provide insights from diverse data sources. Necessary technologies related to SRM consist of:

Large Language Models (LLMs): Large Language Models (LLMs) are a type of generative AI model designed to understand and generate human language. They are trained on vast amounts of text data and use deep learning techniques to predict the next word in a sentence, enabling them to generate coherent, contextually relevant text. LLMs, such as GPT-3, are characterized by their large number of parameters, which allows them to capture complex language patterns and nuances[7]. These features make LLMs especially well-suited for tasks involving communication, document analysis, and knowledge extraction within SRM.

Generative Adversarial Networks (GANs): Generative Adversarial Networks (GANs) are a type of deep generative model introduced by Goodfellow et al. in 2014. They consist of two networks: a generator and a discriminator. The generator's role is to create realistic data to deceive the discriminator, while the discriminator's role is to distinguish between real and fake samples[8]. In SRM environments, GANs can generate simulations, forecast results, and augment limited datasets [9].

Multimodal AI Systems: Multimodal AI refers to machine learning models that can process and integrate various data types, including text, images, audio, video, and other sensory inputs, in contrast to conventional AI models that focus on a single data type, multimodal AI merges and evaluates different data forms to obtain a more comprehensive understanding and produce more reliable outcomes [10]. Their ability to process diverse data sources makes them suitable for comprehensive supplier evaluation.

Foundation Models: Foundation models are large-scale AI models, such as BERT and GPT-3, trained on extensive datasets using self-supervision techniques. These models are adaptable to various tasks and domains, including language and vision, utilizing Transformer architectures. Unlike traditional, task-specific models, foundation models can generalize across applications and be fine-tuned with minimal additional data, making them more versatile and efficient in handling

a wide range of tasks.[11] Their adaptability makes them suitable for diverse SRM functions.

3. Application of Generative AI in Supplier Relationship Management

3.1 Supplier Discovery and Selection

Generative AI can significantly enhance the supplier discovery and selection process through:

Supplier Sourcing: Generative AI enhances supplier discovery by combining keyword- and capability-driven searches with targeted prompts. This technique yields better outcomes than conventional search methods. The AI can analyze publicly accessible data and compare it with existing suppliers, pinpointing groups of potential suppliers for further consideration. This enhances the efficiency and effectiveness of sourcing suppliers, providing procurement teams with a broader range of options [12].

Information Synthesis: Large Language Models (LLMs) can significantly enhance market intelligence synthesis by processing and analyzing vast amounts of data from diverse sources. They can monitor information sources for potential risks and assess geopolitical developments, weather patterns, and market shifts, providing early warnings for possible disruptions. Additionally, LLMs can analyze structured and unstructured data, including historical data and social media inputs, to refine decision-making processes. This enables procurement teams to identify new suppliers, market trends, and potential disruptions more effectively than traditional manual methods [8].

Supplier Profile Generation: Using Generative AI to generate supplier profiles creates detailed profiles by integrating data from various sources, including historical performance and market trends. The AI identifies essential patterns and insights, evaluates performance metrics such as quality and reliability, and predicts future trends and potential disruptions. This process yields comprehensive profiles that enable procurement teams to assess suppliers' strengths and weaknesses, facilitating more informed selection and management [13].

RFP/RFQ Generation and Analysis: Generative AI significantly streamlines the generation and analysis of Requests for Proposals (RFPs) and Requests for Quotation (RFQs), enhancing efficiency and accuracy. It allows the creation of customized RFP templates tailored to specific needs, saving time and resources. By inputting essential details, such as product specifications, budget constraints, and timelines, organizations can receive a preliminary RFP template for review and customization. Additionally, Generative AI can generate content for various sections of RFPs, particularly useful for those with limited resources or expertise. Its integration of Natural Language Processing (NLP) also saves time on RFP responses, enabling teams to focus on strategic tasks and improve proposal quality[14].

3.2 Communication and Relationship Building

The communication capabilities of generative AI offer several advantages in SRM:

Multilingual Communication Enhancement: LLMs can facilitate communication with international suppliers by leveraging their multilingual capabilities. They can perform tasks such as sentiment analysis, contract assessment, and communication optimization, which are crucial for managing and enhancing supplier relationships across different languages and cultural contexts [8].

Automated Communication Management: Generative AI can automate routine communication tasks, such as responding to common inquiries, scheduling meetings, and managing order confirmations. This automation reduces the time and effort required for manual communication, allowing supply chain professionals to focus on more strategic tasks. Additionally, generative AI can analyze communication patterns and sentiment, providing insights into supplier relationships and potential areas for improvement [8].

Personalized Supplier Engagement: Generative AI can significantly enhance personalized supplier engagement by automating and tailoring communication. AI tools analyze supplier data, such as performance and past interactions, to identify patterns and preferences. This enables the creation of tailored email templates that are specific, relevant, and engaging, ensuring each message resonates with the recipient. Additionally, AI provides real-time insights into supplier performance and market trends, enabling timely and informed communication. These capabilities make personalization more accessible and scalable, ultimately strengthening supplier relationships and improving outcomes [15].

3.3 Performance Monitoring and Analysis

Generative AI enhances supplier performance management through:

Predictive Performance Analysis: Generative AI can significantly enhance suppliers' predictive performance analysis by leveraging its ability to analyze large datasets and identify patterns and trends. These models operate on various inputs, including historical delivery times, quality metrics, current market trends, geopolitical events that impact supply chains, weather patterns that affect logistics, social media sentiment that provides insights into supplier reputation, and transactional records that detail past interactions with suppliers [16].

Natural Language Performance Reports: Generative AI can generate natural-language performance reports by analyzing data from various sources and producing human-readable summaries. This capability enables procurement professionals to quickly understand supplier performance metrics, trends, and insights without needing to delve into complex datasets. By leveraging natural language processing (NLP), generative AI can transform quantitative data into narrative reports highlighting key performance indicators, compliance issues, and potential risks, making it easier for decision-makers to interpret and act upon the information[17]

Anomaly Detection and Root Cause Analysis: Generative AI can identify performance anomalies by analyzing large datasets to detect deviations from expected supplier performance metrics. Once anomalies are identified, the AI can generate hypotheses about potential root causes by examining related data, such as historical performance trends, external factors, and operational changes. This capability allows procurement professionals to address issues and optimize supplier relationships proactively [17].

3.4 Risk Management and Mitigation

The predictive capabilities of generative AI significantly enhance supplier risk management:

Supply Chain Disruption Simulation: Generative models can create detailed simulations of potential supply chain disruptions, enabling organizations to test mitigation strategies and develop more resilient supply chain networks [18].

ESG Risk Monitoring: Generative AI enables continuous monitoring of ESG risks from suppliers by analyzing a wide range of data sources, including news reports, social media, regulatory filings, and audit reports. This enables organizations to proactively identify potential ESG risks, such as environmental compliance issues or labor rights violations, and take action before these risks materialize [19].

Financial Stability Assessment: Generative AI assists in evaluating a supplier's financial stability by analyzing data points such as economic health, operational capacity, compliance with industry standards, and historical performance. The sources of financial health information typically consist of structured data, such as transaction records and financial reports, as well as unstructured data, including news articles, social media posts, and market reports. By processing this information, AI models can assess suppliers based on risk factors, providing early warnings of potential bankruptcy or liquidity issues[20].

3.5 Negotiation and Contract Management

Generative AI transforms contract management and negotiation processes:

Contract Generation and Analysis: Generative AI is transforming contract generation and analysis by swiftly creating customized, compliant agreements and summarizing lengthy documents. It can extract key information rapidly, allowing users to focus on critical areas, and flags potential risks while suggesting edits based on company policies and industry best practices, thereby streamlining the revision process [21].

Negotiation Preparation and Strategy: Generative AI enhances negotiation preparation and strategy by examining historical agreements and their outcomes. It points out practical clauses while also identifying those that may carry risks. By offering alternatives from a company's clause library and standard playbook, AI equips negotiators with essential insights. This results in quicker resolutions and better terms, as negotiators can focus on parts of the contract that require adjustments based on risk assessment. Additionally, AI can review prior contracts and effective negotiation tactics to propose alternative clauses that strengthen the company's negotiating position [21].

Contract Compliance Monitoring: Generative AI can enhance contract compliance monitoring by analyzing procurement processes and identifying potential fraudulent activity or irregularities. It can draw on insights from past instances of noncompliance to detect similar patterns in the future, thereby aiding organizational governance. This capability enables

organizations to reduce risks and implement corrective measures by reviewing policy documents and reports to identify areas of noncompliance [17].

4. Implementation Challenges and Considerations

4.1 Quality and Integration

Effective generative AI implementation in SRM faces several data-related challenges:

Data Silos and Fragmentation: Many organizations store supplier information in separate systems, complicating the creation of comprehensive datasets needed for efficient AI training and implementation. This issue is especially prevalent in companies with low levels of digitalization or those that have recently added new systems [22].

Data Quality Issues: Poor-quality data can amplify biases, resulting in skewed predictions and poor decision-making. Validating synthetic data is challenging, as it must accurately reflect the nuances and context of the original data, requiring robust techniques to ensure its quality and representativeness [23].

Integration with Legacy Systems: Integrating generative AI into existing IT infrastructures is a complex process that requires substantial modifications. This process requires advanced knowledge and specialized skills, which are often scarce in organizations [24].

4.2 Ethical and Privacy Considerations

The use of generative AI in SRM raises essential ethical and privacy considerations:

Data Ownership and Consent: Data ownership and consent are essential when using generative AI solutions in procurement and supplier management. Organizations must establish clear policies on data ownership and implement consent mechanisms to ensure all parties, including suppliers, understand and agree on how their data will be used. This includes obtaining explicit consent for data collection, processing, and sharing, while ensuring compliance with relevant data protection regulations [25].

Algorithmic Bias: Algorithmic bias in Supplier Relationship Management (SRM) can lead to unfair supplier evaluations, as data may reflect historical prejudices. This bias may impact supplier selection, performance assessments, and risk evaluations, leading to unjust treatment. To mitigate these issues, organizations should adopt robust data governance, regularly audit AI systems for fairness, and ensure transparency in their decision-making processes. This promotes equitable supplier relationships and optimizes SRM processes [26].

Transparency and Explainability: Transparency and explainability in Supplier Relationship Management (SRM) are crucial for understanding and justifying AI-driven decisions about suppliers. Transparent decision-making processes build trust and accountability. Explainable AI reveals how supplier evaluations and risk assessments are conducted, enabling organizations to identify biases or errors. By utilizing quality control tools and implementing good governance practices, organizations can ensure responsible data use and maintain fair supplier relationships [26].

4.3 Organizational Readiness

Successful implementation requires organizational preparation:

Skill Development: Procurement teams require new competencies to efficiently collaborate with, implement, and manage generative AI systems. These competencies encompass data analysis, model assessment, and an understanding of AI technologies. [27]

Process Redesign: Current Supplier Relationship Management (SRM) processes may require substantial rework to leverage the capabilities of generative AI fully. Furthermore, new methodologies may be necessary to oversee the collaboration between humans and AI, ensuring that responsibilities are assigned to people and machines according to their unique strengths [17].

Change Management: Organizations must address human concerns in AI implementation, particularly regarding job displacement and trust in AI-generated insights. This can be done through training programs that enhance skills in data analysis and AI management. Encouraging lifelong learning and interdisciplinary collaboration will help employees transition to new roles. Clear communication about the benefits of AI and the new opportunities it offers can also help reduce fears and resistance to change [28].

5. Future Directions

Several emerging trends will shape the future of generative AI in SRM:

5.1 Autonomous Supplier Relationship Management

As generative AI capabilities advance, we anticipate the emergence of increasingly autonomous SRM systems capable of:

Predictive Relationship Management: Future systems will identify relationship issues and opportunities ahead of human managers, suggesting interventions based on data patterns. This will enable organizations to adopt a proactive rather than reactive approach to supplier management, enhancing relationship quality and collaboration [29].

Self-Optimizing Supplier Networks: Advanced generative AI will dynamically adjust supplier networks in response to changing conditions. It will automatically manage order quantities, logistics setups, and communication strategies to improve overall supply chain performance. Additionally, AI can streamline decision-making by re-routing orders or choosing alternative suppliers, thereby increasing the efficiency and resilience of the supply chain [30].

AI-to-AI Negotiations: As suppliers adopt generative AI, we may see AI-driven negotiations and collaborations, with human supervision primarily focused on strategic elements rather than day-to-day operations. These negotiations may cover several factors, including pricing, delivery schedules, and contract terms [30].

5.2 Enhanced Decision Support

Next-generation generative AI will provide increasingly sophisticated decision support:

Scenario Planning and What-If Analysis: Future systems will generate comprehensive scenarios that capture complex interactions among suppliers, market conditions, and internal factors, enabling more robust strategic planning [31].

Augmented Supplier Innovation: Generative AI will increasingly facilitate collaborative innovation with suppliers by identifying complementary capabilities, suggesting joint development opportunities, and even generating preliminary product or process designs [32].

Cognitive Procurement Advisors: Advanced AI systems will function as cognitive advisors to procurement professionals, combining domain expertise, relationship history, and strategic context to provide nuanced recommendations tailored to specific situations [33].

5.3 Integration with Emerging Technologies

The integration of generative AI with other emerging technologies will create new SRM capabilities:

Digital Twin Integration: Integrating generative AI with digital twins will enhance collaboration between suppliers and manufacturers by creating comprehensive virtual models. By accessing a digital twin, both parties can view real-time data together, ensuring alignment and enabling quicker responses to market changes. This will reduce miscommunication errors and improve decision-making, while also facilitating scenario planning and risk management [34].

Blockchain and Smart Contract Synergies: Integrating generative AI with blockchain technology and smart contracts in Supplier Relationship Management (SRM) will enhance procurement operations by creating a more secure, transparent, and efficient environment. Generative AI supports strategic procurement planning, while blockchain provides supplier transparency and enables real-time contract execution with no manual intervention [35].

IoT and Edge Computing Convergence: The convergence of IoT and edge computing, enhanced by generative AI, will enable real-time analysis and response to changing conditions at supplier facilities [36].

6. Conclusion

Generative AI represents a transformative technology for supplier relationship management, offering unprecedented capabilities for communication, analysis, prediction, and optimization. While significant implementation challenges remain, organizations that successfully integrate generative AI into their SRM processes can achieve more resilient, efficient, and collaborative supplier relationships.

The future evolution of generative AI in SRM will likely be characterized by greater autonomy, enhanced decision-support capabilities, and integration with complementary technologies. Organizations that take a strategic, ethical, and human-

centered approach to implementing these technologies will be well-positioned to gain a competitive advantage through superior supplier relationships.

As this field continues to evolve rapidly, further research is needed to quantify the impact of generative AI on SRM outcomes, develop best practices for implementation, and address emerging ethical and practical challenges. What remains clear, however, is that generative AI will fundamentally reshape how organizations manage their supplier relationships in the years ahead.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers

References

- [1] Lambert, D. M. & Schwieterman, M. A. (2012). Supplier relationship management as a macro business process. *Supply Chain Management: An International Journal*.
- [2] Linkon, A. A., Shaima, M., Sarker, M. S. U., Badruddowza, , Nabi, N., Rana, M. N. U., Ghosh, S. K., Esa, H. & Chowdhury, F. R. (2024). Advancements and Applications of Generative Artificial Intelligence and Large Language Models on Business Management: A Comprehensive Review. *Journal of Computer Science and Technology Studies*.
- [3] Cousins, P. D., & Spekman, R. (2003). Strategic supply and the management of inter-and intra-organisational relationships. *Journal of Purchasing and Supply Management*, 9(1), 19-29.
- [4] Park, J., Shin, K., Chang, T. W., & Park, J. (2010). An integrative framework for supplier relationship management. *Industrial Management & Data Systems*, 110(4), 495-515.
- [5] Teller, C., Kotzab, H., Grant, D. B. & Holweg, C. (2016). The importance of key supplier relationship management in supply chains. *International Journal of Retail & Distribution Management*.
- [6] Fröhlich, E. & Steinbiß, K. (2020). Supplier Relationship Management Goes Digital: First Empirical Insights—Universal Journal of Management.
- [7] purpleSlate,. (2023). The Comprehensive Guide to Understanding Generative AI. Me-dium.com - Article.
- [8] Srivastava, S. K., Routray, S., Bag, S., Gupta, S., & Zhang, J. Z. (2024). Exploring the Potential of Large Language Models in Supply Chain Management. *Journal of Global Information Management*.
- [9] Mohamed, O. A. M. (2024). How is Generative AI Transforming Supply Chain Operations and Efficiency?. *MASTER'S THESIS IN MANAGEMENT ENGINEERING*.
- [10] Stryker, C. (2024). What is multimodal AI? IBM Article.
- [11] Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., Arx, S. v., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Cas-tellon, R., Chatterji, N. S., Chen, A. S., Creel, K. A., Davis, J., Demszky, D., Donahue, C., Doumbouya, M., Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh, K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L. E., Goel, K., Goodman, N. D., Grossman, S., Guha, N., Hashimoto, T., Henderson, P., Hewitt, J., Ho, D. E., Hong, J., Hsu, K., Huang, J., Icard, T. F., Jain, S., Jurafsky, D., Kalluri, P., Karamcheti, S., Keeling, G., Khani, F., Khattab, O., Koh, P. W., Krass, M. S., Krishna, R., Kuditipudi, R., Kumar, A., Ladhak, F., Lee, M., Lee, T., Leskovec, J., Levent, I., Li, X. L., Li, X., Ma, T., Malik, A., Man-ning, C., D., Mirchandani, S. P., Mitchell, E., Munyikwa, Z., Nair, S., Narayan, A., Na-rayanan, D., Newman, B., Nie, A., Niebles, J. C., Nilforoshan, H., Nyarko, J. F., O gut, G., Orr, L., Papadimitriou, I., Park, J. S., Piech, C., Portelance, E., Potts, C., Raghunathan, A., Reich, R., Ren, H., Rong, F., Roohani, Y. H., Ruiz, C., Ryan, J., R'e, C., Sadigh, D., Sagawa, S., Santhanam, K., Shih, A., Srinivasan, K. P., Tamkin, A., Taori, R., Thomas, A. W., Tramér, F., Wang, R. E., Wang, W., Wu, B., Wu, J., Wu, Y., Xie, S. M., Yasunaga, M., You, J., Zaharia, M. A., Zhang, M., Zhang, T., Zhang, X., Zhang, Y., Zheng, L., Zhou, K. & Liang, P. (2021). On the Opportunities and Risks of Foundation Models. ArXiv.
- [12] Mittal, A. & Schmidt, J. S. (2024). Making the leap with generative AI in procurement. McKinsey-Blog.
- [13] DIJMARESCU, E. (2024). Current and Future Trends in Strategic Procurement with Generative AI. *MANAGEMENT AND ECONOMICS REVIEW*.
- [14] Gill, J. K. (2024). Generative AI For Request for Proposal. XENONSTACK.
- [15] Sourcik, (2024). The Importance of Personalization in Supplier Communication. Sourcik-Blog.
- [16] Wilson, G., Johnson, O. & Brown, W. (2024). The Role of Machine Learning in Predictive Analytics for Supply Chain Management. MDPI.
- [17] Rajani, V. & Deng, M. (2023). How Generative AI will transform Sourcing and Procurement Operations. Deloitte-Blog.
- [18] Boone, T., Fahimnia, B., Ganeshan, R., Herold, D. M., et al. (2025). Generative AI: Opportunities, challenges, and research directions for supply chain resilience. *International Journal of Production Economics*, 271, 108245.

- [19] GEP,. (2024). LEVERAGING AI FOR ESG: ASUPPLY CHAIN PERSPECTIVE. GEP Blogs.
- [20] Chaudhary, M. (2025). Leveraging Generative AI In Supply Chain Risk Assessment And Mitigation. Forbes Technology Council, Council Post.
- [21] Icertis, (2025). How Generative AI is Changing Contract Management. Icertis Article.
- [22] Bandi, A., Adapa, P. V. S. R. & Kuchi, Y. E. V. P. K. (2023). The Power of Generative AI: A Review of Requirements, Models, Input–Output Formats, Evaluation Metrics, and Challenges. Future Internet.
- [23] Fluhler, M. (2024). Why Data Quality Matters in the Age of Generative AI. Dataiku Blog.
- [24] Al-kfairy, M. (2025). Strategic Integration of Generative AI in Organizational Settings: Applications, Challenges, and Adoption Requirements. IEEE Engineering Management Review.
- [25] Sengupta, P. (2023). Data ownership and privacy in the age of generative AI. The Payments Association- article.
- [26] Singh, P., Hung, S., Das, S. & Thunga, A. (2023). PROCUREMENT TRANSFORMATION IN THE AGE OF GENERATIVE AI. Everest Group.
- [27] Veen, B. v. d. (2024). BRIDGING THE GENERATIVE LEAP: EXPLORING FACTORS DETERMINING GENERATIVE AI READINESS IN ORGANIZATIONS. EINDHOVEN UNIVERSITY OF TECHNOLOGY.
- [28] Mhaskey, S. V. (2024). Integration of Artificial Intelligence (AI) in Enterprise Resource Planning (ERP) Systems: Opportunities, Challenges, and Implications. International Journal of Computer Engineering in Research Trends.
- [29] Softwebsolutions,. (2024). What is the role of predictive analytics in supply chain management?. Softwebsolutions Article.
- [30] Askonen, H. (2025). Generative AI in procurement. INDUSTRIAL ENGINEERING AND MANAGEMENT Master's thesis.
- [31] Finkenstadt, D. J., Sotiriadis, J., Guinto, P., & Smith, A. (2024). Contingency scenario planning using generative AI. Journal of Scenario Planning, 1(1), 1-15.
- [32] Li, L., Liu, Y., Jin, Y., Cheng, T. C. E., & Zhang, Q. (2024). Generative AI-enabled supply chain management: The critical role of coordination and dynamism. International Journal of Production Economics, 270, 109178.
- [33] Olan, F., Spanaki, K., Ahmed, W., & Zhao, G. (2025). Enabling explainable artificial intelligence capabilities in supply chain decision support making. Production Planning & Control, 36(6), 808-819.
- [34] Robinson, J. (2025). What role does digital twinning play in enhancing supplier collaboration and product development in SRM?. flevy.
- [35] Adelusola, M. (2025). Automating Supplier Relationship Management in SAP. Obafemi Awolowo University.
- [36] Wang, X., Wan, Z., Hekmati, A., Zong, M., Alam, S., Zhang, M. & Krishnamachari, B. (2024). The Internet of Things in the Era of Generative AI: Vision and Challenges. IEEE Internet