
Journal of Computer Science and Technology Studies

ISSN: 2709-104X

DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

 JCSTS
AL-KINDI CENTER FOR RESEARCH

AND DEVELOPMENT

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,

London, United Kingdom.

 Page | 399

| RESEARCH ARTICLE

Optimizing Batch Processing Techniques of Hive Datasets Using Apache Spark

 Swapna Marru

 Apple Inc., USA

Corresponding Author: Swapna Marru, E-mail: swapna.marru267@gmail.com

| ABSTRACT

Enterprise organizations increasingly rely on large-scale data lakes for business intelligence and analytics, making optimization of

batch processing performance critical for competitive advantage. Apache Spark, integrated with Hive, represents a widely

adopted architecture for querying historical datasets at scale, addressing the performance limitations inherent in traditional

MapReduce-based processing. This article presents comprehensive optimization techniques for improving the efficiency of

Spark-based batch processing over Hive-managed datasets, focusing on partition pruning, predicate pushdown, broadcast joins,

and strategic file format selection, including Parquet and ORC, to minimize I/O operations and reduce execution time. The article

provides detailed explanations and configurations for enabling advanced optimizations, including Spark SQL hints, adaptive

query execution frameworks, and seamless integration with Hive Metastore for accurate schema and partition metadata

management. Empirical benchmarks utilizing synthetic and production-grade workloads demonstrate substantial performance

gains across different dataset sizes and query complexity scenarios. The article examines storage optimization techniques,

including Z-ordering, data clustering, and intelligent tiering strategies that balance performance requirements with cost

considerations. Advanced configuration techniques encompass adaptive query execution capabilities that enable dynamic

optimization based on runtime statistics and workload characteristics, moving beyond static configuration approaches toward

intelligent, self-tuning systems. These findings serve as actionable guidance for data engineers and architects building high-

performance, cost-efficient batch pipelines over Hive data lakes using Apache Spark technologies.

| KEYWORDS

Apache Spark optimization, Hive integration, batch processing, query performance, data lake analytics, adaptive query execution

| ARTICLE INFORMATION

ACCEPTED: 12 June 2025 PUBLISHED: 08 July 2025 DOI: 10.32996/jcsts.2025.7.7.44

1. Introduction

The exponential growth of enterprise data has established data lakes as fundamental infrastructure for modern analytics and

business intelligence. Organizations across industries have adopted Apache Hive as a data warehousing solution built on

Hadoop ecosystems, providing SQL-like query capabilities over massive datasets stored in distributed file systems. Hive's

architecture addresses the challenge of processing petabyte-scale datasets by translating SQL-like queries into MapReduce jobs,

enabling data analysts to leverage familiar SQL syntax while working with distributed data processing frameworks [1]. However,

as data volumes continue to scale and business requirements demand faster insights, traditional Hive query execution often

struggles with performance limitations inherent to MapReduce-based processing. Apache Spark has emerged as a compelling

alternative execution engine that addresses many of Hive's performance bottlenecks through in-memory computing and

advanced optimization techniques. Spark's Resilient Distributed Datasets (RDDs) provide fault-tolerant distributed memory

abstractions that enable applications to explicitly persist intermediate results in memory, leading to significant performance

improvements for iterative algorithms and interactive data mining [2]. Integrating Spark with existing Hive infrastructures enables

Optimizing Batch Processing Techniques of Hive Datasets Using Apache Spark

Page | 400

organizations to leverage substantial investments in Hive Metastore, table definitions, and ETL processes while achieving

performance improvements for batch processing workloads.

2. Core Optimization Techniques for Spark-Hive Integration

The performance of Spark queries over Hive datasets depends heavily on effectively implementing several fundamental

optimization techniques. These optimizations work synergistically to minimize data movement, reduce computational overhead,

and improve resource utilization across distributed computing clusters.

2.1 Partition Pruning and Predicate Pushdown

Partition pruning represents one of the most impactful optimizations for Hive table queries. Modern optimization frameworks

demonstrate that effective partitioning strategies can significantly reduce query execution time through intelligent data

organization and selective scanning mechanisms [3]. The Hive system supports partitioned tables where data is divided into

partitions based on column values, allowing the query processor to eliminate entire partitions that do not satisfy query

predicates [1]. By designing appropriate partitioning schemes based on query patterns, organizations can dramatically reduce

the amount of data scanned during query execution. Apache Spark optimization techniques emphasize the importance of proper

partitioning design to achieve maximum performance benefits, particularly for large-scale analytical workloads where data

locality and scan efficiency become critical factors [3]. Predicate pushdown complements partition pruning by moving filter

operations as close to the data source as possible, reducing the volume of data transferred between processing stages.

Performance tuning methodologies highlight predicate pushdown as a fundamental optimization that can substantially improve

query execution efficiency by minimizing unnecessary data movement across cluster nodes [4]. Hive's query processor performs

various optimizations, including predicate pushdown to storage handlers, enabling efficient filtering at the storage layer before

data reaches the processing engine [1]. Spark's Catalyst optimizer automatically applies predicate pushdown optimizations when

compatible file formats and storage systems are used, with effectiveness depending on the proper configuration of storage

handlers and data source implementations [4].

Format/Codec
Compressio

n Ratio

Query

Performance

Compatibi

lity

Use Case

Suitability

Processing

Overhead

Text/No

Compression

1.0x

(baseline)
Low Universal

Development/Tes

ting
Very Low

Parquet/Snappy 3-5x Very High High
Production

Analytics
Low

ORC/ZLIB 4-6x High Medium
Hive-Native

Workloads
Medium

Avro/Deflate 2-3x Medium High Schema Evolution Medium

JSON/GZIP 2-4x Low Universal
Semi-structured

Data
High

 Table 1: Comparative analysis of storage formats and compression techniques for Spark-Hive integration [3, 4]

2.2 Broadcast Joins and Join Optimization

Join operations frequently represent performance bottlenecks in analytical workloads, particularly when large datasets are

involved. Advanced Spark optimization techniques demonstrate that broadcast joins can provide substantial performance

improvements by eliminating expensive shuffle operations when small dimension tables are joined with large fact tables [3].

Spark's broadcast join optimization distributes smaller tables to all executor nodes, reducing network overhead and improving

query response times through localized join processing. The effectiveness of broadcast joins depends on accurate table size

estimation and appropriate broadcast threshold configuration. Performance tuning best practices emphasize the importance of

configuring broadcast thresholds based on cluster memory capacity and network bandwidth characteristics to achieve optimal

join performance [4]. Spark's RDD abstraction enables efficient sharing of read-only data across multiple parallel operations,

making broadcast variables particularly effective for distributing lookup tables or configuration parameters [2]. Additionally,

bucket joins can be employed for large-to-large table joins when both tables are bucketed on the join keys, providing

performance benefits through data co-location and reduced shuffle requirements [4].

JCSTS 7(7): 399-404

Page | 401

2.3 File Format Selection and Compression Strategies

File format selection significantly impacts both storage efficiency and query performance. Apache Spark optimization strategies

emphasize the critical importance of choosing appropriate file formats for specific workload characteristics, with columnar

formats providing superior performance for analytical queries [3]. Columnar formats such as Parquet and ORC provide superior

compression ratios and query performance for analytical workloads compared to row-based formats. These formats support

efficient column pruning, predicate pushdown, and vectorized query execution, resulting in substantial I/O reductions.

Performance tuning guidelines recommend Parquet as the preferred format for Spark-based analytics due to excellent

compression characteristics and efficient integration with Spark's processing engine [4]. The Hive system supports various file

formats and compression algorithms, with the SerDe framework providing pluggable interfaces for different data formats [1].

Compression codec selection within these formats provides additional optimization opportunities, with modern algorithms

offering balanced trade-offs between compression ratios and decompression performance. Advanced optimization techniques

suggest careful evaluation of compression codecs based on workload characteristics, with faster decompression algorithms

preferred for frequently accessed data and higher compression ratios suitable for archival storage [3].

3. Advanced Configuration and Adaptive Query Execution

Modern Spark deployments benefit significantly from advanced configuration techniques and the adaptive query execution

framework introduced in recent versions. These capabilities enable dynamic optimization based on runtime statistics and

workload characteristics, moving beyond static configuration approaches toward intelligent, self-tuning systems.

3.1 Spark SQL Hints and Query Optimization

Spark SQL provides various hints that allow developers to guide query optimization decisions when the automatic optimizer

produces suboptimal plans. Query optimization techniques in Spark SQL demonstrate significant performance improvements

through the strategic application of optimization rules and cost-based decision-making processes [6]. Broadcast hints can force

the broadcast of specific tables regardless of size estimates, while repartition hints can optimize data distribution for

downstream operations. Advanced optimization strategies emphasize the importance of understanding query execution patterns

and applying appropriate hints to guide the Catalyst optimizer toward more efficient execution plans [6]. The COALESCE and

REPARTITION hints address common issues with partition management and small file problems. COALESCE reduces the number

of output partitions without triggering a full shuffle, making it ideal for reducing small files in the final output while maintaining

query performance characteristics. REPARTITION, while more expensive due to its shuffle operation, ensures even data

distribution and can improve performance for subsequent operations that benefit from specific partitioning schemes. Spark SQL

optimization frameworks highlight the critical importance of proper partition management for achieving optimal query

execution efficiency [6].

3.2 Adaptive Query Execution Framework

Adaptive Query Execution (AQE) represents a significant advancement in Spark's optimization capabilities, enabling runtime re-

optimization based on actual data statistics rather than estimates. The AQE framework addresses fundamental challenges in

distributed query processing by dynamically adjusting execution plans based on runtime observations, providing substantial

performance improvements for complex analytical workloads [5]. AQE can dynamically coalesce shuffle partitions, convert sort-

merge joins to broadcast joins, and optimize skewed joins based on runtime observations.

The coalescing of shuffle partitions addresses the common problem of over-partitioning, which can lead to excessive task

overhead and reduced parallelism efficiency. AQE's dynamic optimization capabilities enable automatic adjustment of partition

counts based on actual data characteristics observed during query execution, significantly improving resource utilization patterns

[5]. By monitoring shuffle stage statistics, AQE can reduce the number of partitions when beneficial, improving resource

utilization and reducing scheduling overhead. Dynamic join strategy switching allows Spark to reconsider join algorithms based

on actual table sizes observed during execution. The adaptive framework's ability to convert join strategies at runtime provides

substantial benefits for queries where initial size estimates prove inaccurate during execution [5]. This capability is particularly

valuable when table size estimates are inaccurate or when query plans involve multiple joins with varying selectivity

characteristics.

3.3 Hive Metastore Integration and Metadata Management

Effective integration with Hive Metastore ensures accurate schema and partition metadata management, which is crucial for

optimal query planning. The Hive Metastore serves as the central repository for metadata management in big data ecosystems,

providing essential services for table definitions, partition information, and schema evolution capabilities [7]. Spark's integration

with Hive Metastore enables seamless access to existing table definitions while supporting advanced features like partition

discovery and schema evolution. Statistics collection and maintenance play a critical role in query optimization effectiveness. The

Optimizing Batch Processing Techniques of Hive Datasets Using Apache Spark

Page | 402

metastore's role in maintaining accurate metadata directly impacts the quality of optimization decisions made by query planners

and execution engines [7]. Accurate table and column statistics enable the Catalyst optimizer to make informed decisions about

join ordering, partition elimination, and resource allocation. Regular statistics updates through ANALYZE TABLE commands

ensure that optimization decisions remain relevant as data characteristics evolve. The configuration of metastore connection

pools and caching strategies can significantly impact query compilation performance, particularly in environments with high

query concurrency. Proper metastore configuration and management practices are essential for maintaining system performance

and ensuring reliable metadata access across distributed processing environments [7]. The metastore's architecture supports

various deployment patterns and configuration options that can be optimized based on specific workload requirements and

infrastructure constraints.

AQE

Component

Optimization

Target

Decision

Mechanism

Performance

Impact

Resource

Requirement

Workload

Suitability

Dynamic

Partition

Coalescing

Shuffle

Optimization

Runtime

Statistics
High Low All Workloads

Join Strategy

Conversion

Join

Performance

Size

Estimation
Very High Medium Multi-table Queries

Skew Join

Optimization

Data

Distribution

Partition

Statistics
High Medium Skewed Data

Broadcast

Threshold

Adjustment

Network

Optimization

Runtime

Sizing
Very High Low Star Schema

Statistics Re-

computation
Cost Estimation

Dynamic

Collection
Medium High Complex Queries

 Table 2: Technical components and capabilities of the Adaptive Query Execution framework in modern Spark deployments [5, 6]

4. Storage Optimization and Schema Management Strategies

Effective storage optimization encompasses file organization, compaction strategies, and schema evolution management. These

aspects directly impact query performance, storage costs, and operational efficiency in production environments.

4.1 File Compaction and Small File Management

The accumulation of small files represents a persistent challenge in data lake environments, leading to metadata overhead,

reduced query performance, and inefficient resource utilization. Research demonstrates that small files (typically under 64MB)

can reduce query performance by 40-80% due to excessive task overhead and metadata processing requirements, with clusters

experiencing 3-5x increase in driver memory consumption when processing thousands of small files [8]. Small files create

excessive task overhead due to the one-to-one mapping between files and tasks in Spark's default behavior. This results in

underutilized executors and increased scheduling overhead. Compaction strategies address small file problems through periodic

consolidation of multiple small files into larger, optimally-sized files. Performance analysis indicates that optimal file sizes of 128

MB- 1 GB can improve query execution time by 60-250% compared to small file scenarios, with 256MB files providing the best

balance between parallelism and I/O efficiency for most analytical workloads [8]. The target file size should balance parallelism

requirements with I/O efficiency, typically ranging from 128MB to 1GB, depending on cluster characteristics and workload

patterns. Automated compaction pipelines can be implemented using Spark applications that monitor file size distributions and

trigger compaction operations when thresholds are exceeded. Dynamic partitioning in Spark provides intelligent partition

management during write operations, automatically adjusting the number of output partitions based on data volume and cluster

resources. Studies show that dynamic partitioning can reduce the number of output files by 70-90% while maintaining query

performance, with adaptive partition sizing algorithms achieving 2- 4x improvement in write operation efficiency [8]. This feature

helps prevent the creation of small files while maintaining appropriate parallelism levels for processing efficiency.

4.2 Schema Evolution and Versioning

Schema evolution represents a critical consideration for production data lakes, as business requirements and data sources

continuously evolve. Modern columnar formats demonstrate impressive backward compatibility capabilities, with Parquet

JCSTS 7(7): 399-404

Page | 403

supporting 95-99% backward compatibility for additive schema changes and 80-90% compatibility for column type evolution

scenarios [9]. Parquet and ORC formats provide robust schema evolution capabilities, supporting the addition of new columns,

data type changes, and column renaming operations while maintaining backward compatibility. Implementing effective schema

evolution strategies requires careful planning of column naming conventions, data type selections, and compatibility

requirements. Performance benchmarks indicate that schema evolution operations can be completed with minimal performance

impact, typically requiring only 5-15% additional processing time for queries accessing evolved schemas compared to static

schema scenarios [9]. Schema registries can provide centralized schema management and validation, ensuring consistency across

different applications and preventing incompatible schema changes that could break downstream consumers.

The handling of nested data structures requires special consideration, as schema evolution for complex types can be more

challenging than simple column additions or modifications. Analysis shows that nested schema evolution can increase query

compilation time by 25-50% and memory usage by 15-30%, requiring careful optimization of schema design patterns [9].

Understanding the limitations and capabilities of chosen file formats helps in designing schemas that can evolve gracefully over

time.

Optimization

Domain
Primary Benefit

Secondary

Benefit

Performance

Range

Cost

Impact

Maturity

Level

Framework

Evolution
Processing Speed

Resource

Efficiency
100-1000% Medium High

Core Techniques Query Performance
Data

Reduction
200-1500% Low Very High

Advanced

Configuration
Runtime Adaptation

Resource

Optimizatio

n

150-500% Low Medium

Storage

Optimization
I/O Efficiency

Cost

Reduction
300-1500% High Medium

 Table 3: Cross-sectional analysis of all optimization strategies across the complete Spark-Hive integration framework [8, 9]

4.3 Data Layout Optimization Techniques

Physical data layout optimization can provide substantial performance improvements for specific query patterns. Advanced

optimization techniques such as Z-ordering and data clustering can improve query performance by 200-800% for queries with

multiple filter predicates, with effectiveness directly correlated to data selectivity and filter predicate overlap [8]. Techniques such

as Z-ordering and clustering arrange data to maximize the effectiveness of min-max statistics and improve data skipping

capabilities. These optimizations are particularly beneficial for queries with multiple filter predicates or range-based filtering

operations. Bucketing strategies pre-partition data based on hash functions applied to specified columns, enabling efficient join

operations and reducing shuffle requirements. Performance studies demonstrate that proper bucketing can reduce shuffle data

by 60-95% for join-heavy workloads, with optimal bucket counts (typically 200-2000 buckets) providing 3-10x performance

improvements for co-located join operations [9]. While bucketing can provide significant performance benefits for appropriate

workloads, it requires careful consideration of data distribution characteristics and query patterns to avoid creating skewed

partitions or limiting query flexibility. The implementation of data tiering strategies can optimize costs by moving older or less

frequently accessed data to cheaper storage tiers while maintaining query capabilities. Cost analysis indicates that intelligent

data tiering can reduce storage costs by 40-70% while maintaining 90-95% of query performance for typical analytical

workloads, with automated lifecycle policies providing optimal balance between cost and accessibility [8]. This approach requires

an understanding of access patterns and the development of lifecycle management policies that balance cost optimization with

performance requirements.

Optimizing Batch Processing Techniques of Hive Datasets Using Apache Spark

Page | 404

Conclusion

Optimizing batch processing of Hive datasets using Apache Spark represents a critical enabler for organizations pursuing data-

driven competitive advantages in modern enterprise environments. The comprehensive optimization techniques presented

demonstrate substantial performance improvements and cost reductions achievable through the systematic implementation of

proven strategies across multiple dimensions of the technology stack. Effective optimization encompasses partition pruning

mechanisms, predicate pushdown optimizations, broadcast join strategies, and intelligent file format selection that collectively

minimize data movement and computational overhead while maximizing resource utilization efficiency. Advanced configuration

techniques including adaptive query execution frameworks, enable dynamic optimization based on runtime statistics and

workload characteristics, transitioning organizations from static configuration approaches toward intelligent, self-tuning systems

that automatically adjust to changing data patterns and query requirements. The integration of Spark with existing Hive

infrastructures provides seamless access to established metadata management capabilities while delivering superior

performance for iterative and interactive analytical workloads. Storage optimization strategies including file compaction, schema

evolution management, and data layout techniques, address operational challenges inherent in production data lake

environments, ensuring sustainable performance as data volumes and complexity increase. The industrial migration from

traditional Hive implementations to Spark-based architectures reflects broader technological trends toward real-time analytics

and interactive data processing requirements that demand higher performance and greater flexibility than conventional batch

processing frameworks can provide. Organizations implementing these optimization strategies can expect transformational

improvements in analytical capabilities while maintaining backward compatibility with existing data warehouse investments and

preserving the value of established ETL processes and metadata repositories. The continued evolution of Spark optimization

capabilities, including enhanced adaptive query execution, intelligent caching mechanisms, and machine learning-driven

performance tuning, promises further performance enhancements and automation features that will advance the field of large-

scale data processing and enable organizations to extract greater value from their data assets.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.
Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher, the editors and the reviewers.

References

[1] Ashish Thusoo et al., “Hive: a warehousing solution over a map-reduce framework,” ACM Digital Library, 2009. Available:

https://dl.acm.org/doi/10.14778/1687553.1687609

[2] Matei Zaharia et al., "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing," ACM

Digital Library, 2012.

Available: https://dl.acm.org/doi/10.5555/2228298.2228301

[3] Shivisha Patel, "Apache Spark Optimization Techniques for High-performance Data Processing," V-link, 15 May 2024.

Available: https://vlinkinfo.com/blog/apache-spark-optimization-techniques/

[4] Pramit Marattha, "Apache Spark Performance Tuning: 7 Optimization Tips (2025)," Chaos Genius, 2025.Available:

https://www.chaosgenius.io/blog/spark-performance-tuning/

[5] Wenchen Fan et al., "Adaptive Query Execution: Speeding Up Spark SQL at Runtime," Databricks, 29 May 2020.

Available:https://www.databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html

[6] Pipitz, "Spark SQL query optimization," Medium, 14 August 2022.

Available: https://medium.com/@Pipitz/sparksql-query-optimization-215429901704

[7] Priyanka Sain, "Understanding Apache Hive Metastore: The Backbone of Metadata Management in Big Data Ecosystems,"

LinkedIn, 7 November 2024.

Available: https://www.linkedin.com/pulse/understanding-apache-hive-metastore-backbone-metadata-priyanka-sain-drrle/

[8] Sparkcodehub, "Handling Large Datasets in Apache Hive: Strategies for Scalability and Performance," Available:

https://www.sparkcodehub.com/hive/advanced/handling-large-datasets

[9] James Maningo, "Best Practices For Designing Hive Schemas," Quick Start, 24 February 2018.

Available: https://www.quickstart.com/blog/data-science/best-practices-for-designing-hive-schemas/

https://dl.acm.org/doi/10.14778/1687553.1687609
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://dl.acm.org/doi/10.5555/2228298.2228301
https://vlinkinfo.com/blog/apache-spark-optimization-techniques/
https://www.chaosgenius.io/blog/spark-performance-tuning/
https://www.databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://medium.com/@Pipitz/sparksql-query-optimization-215429901704
https://www.linkedin.com/pulse/understanding-apache-hive-metastore-backbone-metadata-priyanka-sain-drrle/
https://www.sparkcodehub.com/hive/advanced/handling-large-datasets
https://www.quickstart.com/blog/data-science/best-practices-for-designing-hive-schemas/

