Journal of Computer Science and Technology Studies ISSN: 2709-104X DOI: 10.32996/jcsts Journal Homepage: www.al-kindipublisher.com/index.php/jcsts # | RESEARCH ARTICLE # Al in Smart Grid Cybersecurity: A Systematic Review of Machine Learning and Deep Learning Approaches against False Data Injection and Other Emerging Attacks ## **Touhid Bhuiyan** School of Information Technology, Washington University of Science and Technology Corresponding Author: Touhid Bhuiyan, E-mail: touhid.bhuiyan@wust.edu ## ABSTRACT Abstract The increasing digitalization of smart grids has heightened their vulnerability to sophisticated cyber threats, with false data injection (FDI) and other emerging attacks posing significant risks to grid stability, reliability, and resilience. Artificial intelligence, particularly machine learning (ML) and deep learning (DL), has gained prominence as a promising defense layer capable of detecting, mitigating, and adapting to these dynamic threats. However, the rapid growth of research in this area has produced fragmented findings across diverse methodologies, datasets, and evaluation strategies. To address this gap, our systematic review consolidates the current state of ML- and DL-driven approaches in smart grid cybersecurity, with a specific emphasis on FDI detection and defense against evolving adversarial tactics. We map the landscape of proposed techniques, highlight benchmark datasets and simulation environments, and critically examine strengths, limitations, and open challenges. In doing so, we establish a taxonomy of Al-based solutions that organizes existing efforts by learning paradigm, attack type, and deployment layer within the smart grid. Beyond cataloguing current achievements, we underscore persistent challenges such as scalability, data imbalance, adversarial robustness, and model explainability, all of which constrain real-world deployment. By synthesizing insights from both academic research and industrial practice, this review aims to provide a roadmap for researchers, practitioners, and policymakers seeking to develop resilient, trustworthy, and adaptive Al-driven cybersecurity mechanisms for future power systems. ## **KEYWORDS** smart grid; cybersecurity; false data injection; machine learning; deep learning; adversarial attacks; resilience ## | ARTICLE INFORMATION **ACCEPTED:** 04 July 2025 **PUBLISHED:** 25 August 2025 **DOI:** 10.32996/jcsts.2025.7.8.136 #### 1. INTRODUCTION The evolution of power systems into intelligent and interconnected smart grids has transformed the traditional electricity infrastructure into a cyber-physical system. This transformation, while enabling efficiency, automation, and resilience, has also introduced a broader attack surface for malicious actors. Smart grids integrate advanced information and communication technologies (ICT), Internet of Things (IoT) devices, distributed energy resources, and real-time data analytics, all of which are critical to ensuring stability and reliability in modern energy systems [1]. However, these interdependencies have simultaneously increased the susceptibility of power systems to sophisticated cyber threats such as false data injection (FDI), denial of service (DoS), replay attacks, and malware propagation [2]. Among these, FDI attacks have attracted particular concern due to their ability to stealthily manipulate state estimation processes, leading to cascading failures, economic losses, and potential blackouts [3]. The convergence of cybersecurity and artificial intelligence (AI) has emerged as a promising frontier to address these threats. Al-driven solutions, particularly machine learning (ML) and deep learning (DL), provide adaptive, data-driven approaches that can detect and mitigate previously unseen attacks while learning from dynamic system behavior [4]. Unlike traditional rule-based intrusion detection systems, Al-based methods can capture complex nonlinear patterns, improve anomaly detection accuracy, Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development, London, United Kingdom. and adapt to evolving adversarial strategies. These advantages have accelerated the adoption of ML and DL in diverse domains of smart grid security, including FDI detection, load forecasting under attack, intrusion detection systems, and adversarial resilience modeling [5], [6]. The domain of Al-enabled smart grid cybersecurity spans multiple layers of the energy ecosystem, from the physical power transmission infrastructure to control centers and end-user interfaces. Applications include real-time monitoring of supervisory control and data acquisition (SCADA) systems, anomaly detection in phasor measurement units (PMUs), protection of demand response programs, and securing vehicle-to-grid communications [7], [8]. Furthermore, Al methods leverage a variety of data modalities such as network traffic, sensor measurements, historical operational data, and simulation environments to create robust detection frameworks. These techniques bring several benefits, including early warning of attacks, improved situational awareness, and faster incident response, thereby contributing to grid resilience and operational continuity. Despite their potential, Al-driven cybersecurity approaches face critical limitations. On the positive side, ML and DL models offer superior scalability, adaptability, and detection accuracy compared to static approaches. They also enable predictive security, where threats can be anticipated rather than simply detected after occurrence. On the negative side, these methods often demand large, high-quality datasets for training, which are scarce in the power systems domain due to privacy concerns and the rarity of labeled cyberattack data. Moreover, issues such as adversarial machine learning, explainability, high computational cost, and real-time deployment constraints raise concerns about their practical feasibility [9], [10]. The trade-offs between model complexity, interpretability, and deployment readiness remain unresolved challenges for both academia and industry. Al in smart grid cybersecurity is thus a broad field that encompasses diverse techniques and deployment strategies, all aimed at protecting the grid from cyber-physical disruptions. There are several intersections between Al-based security mechanisms and related fields, such as blockchain for secure data sharing, edge computing for real-time inference, and digital twins for simulating attack-defense dynamics. These interconnections illustrate the multidisciplinary nature of smart grid security research, highlighting the need for holistic approaches that go beyond algorithmic accuracy alone. Cybersecurity for smart grids differs from traditional IT cybersecurity in significant ways. Traditional IT systems emphasize data confidentiality and integrity in isolated networks, whereas smart grid security prioritizes availability, real-time reliability, and resilience against cascading physical effects. In IT systems, breaches often lead to data leaks or financial losses, while in power systems, they can directly disrupt electricity supply, compromise public safety, and damage critical infrastructure. Furthermore, traditional IT systems rely on abundant labeled datasets and redundant infrastructures, whereas smart grids operate under stringent latency, resource, and operational constraints [11], [12]. This context underscores the necessity of Al-enabled solutions tailored specifically for smart grids rather than generic cybersecurity frameworks. We have undertaken the initiative to systematically explore and consolidate the area of AI-driven smart grid cybersecurity. This review occupies a significant position within the current state of the art by offering a comprehensive analysis, taxonomy development, and synthesis of ML- and DL-based approaches against FDI and other emerging attacks. Through critical evaluation of existing literature, datasets, algorithms, and implementation strategies, this study provides valuable insights into the practical challenges and research frontiers. Key contributions of this review include the following: - This study identifies the domain of AI-enabled smart grid cybersecurity and categorizes the research landscape across multiple attack types and system layers. - Various ML and DL techniques are explored, along with the datasets, benchmarks, and simulation environments employed in this field. - A thorough comparative analysis of research works is presented, summarizing key contributions, methodologies, and observed limitations. - The review highlights state-of-the-art challenges such as adversarial robustness, explainability, scalability, and data imbalance, and discusses how these issues constrain deployment. - This study provides future research directions and recommendations that can guide both academic and industrial efforts toward developing resilient and trustworthy smart grid cybersecurity solutions. The outcomes of this work offer practical implications for industry professionals, policymakers, and researchers engaged in power systems security. By establishing a structured taxonomy and synthesizing key advancements, this review facilitates a clearer understanding of the AI-enabled defense landscape. It also lays the foundation for future studies aimed at addressing unresolved challenges and accelerating real-world deployment. The structure of this paper is organized as follows: Section I presents the introduction and motivation for the review. Section II provides a discussion of related studies and identifies research gaps. Section III describes the review methodology, including study selection and research questions. Section IV analyzes the distribution of selected works, while Section V
presents the taxonomy of AI-driven smart grid cybersecurity. Section VI discusses findings, open challenges, and future directions. Finally, Section VII concludes the paper. Figure 1. Taxonomy of Al-Driven Smart Grid Cybersecurity Approaches #### 2. RELATED STUDIES In recent years, a substantial body of literature has emerged at the intersection of artificial intelligence and smart grid cybersecurity. Several broad surveys and systematic reviews have attempted to map this rapidly growing area, with emphasis on the detection of false data injection (FDI) and other cyber-physical attacks. For example, Zhang et al. et al. [13] provided a comprehensive survey of ML and DL techniques applied to smart grid security, cataloguing methods by attack type and reporting performance trends across benchmark testbeds. Similarly, Rao et al. et al. [14] synthesized advances in intelligent intrusion detection for energy systems, highlighting the proliferation of supervised classifiers and anomaly detectors while noting issues in reproducibility and dataset availability. These studies frame the current research landscape and expose recurring methodological limitations that motivate our systematic review. Focused investigations into false data injection attacks form a large and influential sub-literature. Several empirical and theoretical works have characterized FDI threats and proposed detection strategies that leverage statistical learning, sparse recovery, and graph-based models. Kumar et al. et al. [15] evaluated supervised detectors that rely on residual analysis in state estimation, demonstrating high detection rates under certain contamination regimes but also exposing sensitivity to adversary knowledge. More recent efforts by Li et al. et al. [16] combined topology-aware features with ensemble learning to improve robustness against stealthy FDI crafted using network constraints. Nevertheless, these studies typically assume controlled experiments on IEEE test systems and rarely validate methods on operational-scale traces, leaving open questions about transferability to live deployments. An additional strand by Park et al. et al. [17] examined hybrid rule-learning pipelines that fuse physics-based invariants and ML scoring, showing promise but encountering scalability bottlenecks when applied to larger networks. A sizable literature addresses anomaly detection and intrusion detection using traditional machine learning models. Support vector machines, random forests, and isolation forests have been widely explored for flagging abnormal meter readings, network traffic anomalies, and telemetry drift. Ahmad et al. et al. [18] compared several classical learners across synthetic FDI scenarios, reporting that ensemble tree models often outperform linear classifiers on unbalanced datasets. Conversely, Santos et al. et al. [19] highlighted the limits of supervised approaches when labeled attack samples are scarce, advocating semi-supervised and one-class frameworks. Complementary work by Oliveira et al. et al. [20] evaluated unsupervised clustering and statistical process control techniques, finding reasonable false positive control but reduced sensitivity to low-magnitude, coordinated manipulations. Collectively, these studies show progress in baseline detection but leave unresolved the challenge of achieving high sensitivity while maintaining operational false alarm rates. Deep learning has attracted intense interest for its capacity to model complex spatiotemporal patterns in grid data. Architectures such as recurrent neural networks, convolutional models, autoencoders, and graph neural networks have been proposed to capture temporal dependencies, spatial topology, and multivariate correlations. Huang et al. et al. [21] demonstrated LSTM-based detectors for PMU streams that identify transient anomalies faster than sliding-window statistics. Chen et al. et al. [22] applied convolutional autoencoders for feature learning from synchronized measurement matrices, reporting improved detection in noisy environments. Notably, GNN-based approaches by Moreno et al. et al. [23] exploit grid topology explicitly, improving detection of topology-aware FDI that targets correlated buses. Despite strong in-sample performance, most DL studies emphasize accuracy metrics and often omit deployment considerations such as inference latency and model maintenance. Protection of state estimation and PMU integrity has been treated as a specific technical problem combining power-systems engineering and AI methods. Several studies propose augmented estimators, measurement authentication, and detection layers that monitor residuals and learned invariants. Singh et al. et al. [24] presented a layered detection framework that integrates residual checks with a supervised classifier trained on synthetic FDI scenarios. In parallel, Alvarenga et al. et al. [25] explored secure PMU placement and the use of redundancy-aware learning to reduce attacker stealth. These contributions advance detection capability but frequently rely on idealized PMU coverage and assume an attacker model with limited adaptivity, which underestimates adversaries who can adapt to deployed defenses. Benchmark datasets, testbeds, and simulators underpin progress but also constrain it. Studies often reuse IEEE bus systems, MATPOWER, and PowerWorld case studies, and custom simulation pipelines to generate attack traces. Park et al. et al. [26] surveyed common datasets and found heavy reliance on small synthetic systems such as the IEEE 14-bus and 118-bus cases. Wang et al. et al. [27] developed a larger curated dataset that includes correlated network traffic and meter streams, yet the dataset's scope remains limited relative to real utility heterogeneity. Efforts to create realistic testbeds, including hardware-in-the-loop and real-time digital simulators, have been advanced by Garcia et al. et al. [28], but accessibility and reproducibility remain obstacles for independent validation. The scarcity of publicly available, labeled, and diverse datasets is therefore a persistent barrier to generalizable research. Adversarial machine learning has emerged as a critical concern as attackers target learning systems directly. Work in this area examines evasion attacks that craft malicious inputs and poisoning attacks that corrupt training data. Liu et al. et al. [29] demonstrated gradient-based evasion techniques that reduce detection scores of neural detectors while remaining within operational bounds. In response, defense strategies such as adversarial training, certified robustness bounds, and detection of adversarial perturbations have been proposed by Park et al. et al. [30]. These defenses show partial effectiveness in constrained scenarios but frequently impose computational overhead and do not generalize across attack strategies. The interplay between attacker adaptivity and defender resource limits remains underexplored in the smart grid context. Explainability, interpretability, and trust have received growing attention because operators require actionable insights rather than opaque alerts. XAI tools such as SHAP and LIME have been adapted for time-series and graph-structured grid data to provide local and global attributions. Fernandez et al. et al. [31] evaluated SHAP explanations for tree ensembles used in FDI detection, finding that attributions can help prioritize sensor checks. Gomez et al. et al. [32] argued for model-design choices that favor interpretability, such as sparse linear models or rule-sets, when rapid human-in-the-loop response is necessary. While these studies advance the interpretability agenda, they also reveal trade-offs: more interpretable models sometimes sacrifice detection accuracy and are vulnerable to sophisticated evasion that targets the interpretability mechanism. Data scarcity, privacy concerns, and distribution shifts motivate privacy-preserving and distributed learning approaches. Federated learning, differential privacy, and secure aggregation techniques have been proposed to enable collaborative model training across utilities without raw data sharing. Ahmed et al. et al. [33] evaluated federated anomaly detection prototypes on partitioned meter datasets, showing feasibility but noting communication and heterogeneity challenges. Khalid et al. et al. [34] explored differential privacy adaptations and reported degradation in detection sensitivity when strong privacy budgets are enforced. These efforts indicate promising directions for cross-organization collaboration, while also highlighting the technical trade-offs between privacy, utility, and communication cost. Active defense and adaptive control strategies using reinforcement learning are an emerging area. RL methods have been applied for dynamic defense orchestration, attack mitigation sequencing, and automated restoration policies under compromised conditions. Tan et al. et al. [35] developed a Markov decision process framework that uses RL to select mitigation actions such as selective meter isolation and reconfiguration, showing improved resilience in simulation. Nevertheless, RL-based defenses require careful reward design and safe exploration guarantees to avoid unsafe control actions in real grids. The risk of undesirable emergent policies in safety-critical systems underscores the need for constraint-aware and formally verified RL methods. A broader observation from the related studies is that many contributions advance algorithmic performance but do not fully address system-level deployment concerns. Several surveys and empirical papers emphasize accuracy metrics, cross-validation, and small-scale testbeds while neglecting longitudinal evaluation, operational costs, and human factors. Comparative reviews by multiple authors [13], [14], [18] converge on shared limitations: inconsistent evaluation protocols, limited dataset diversity, insufficient attention to adversarial adaptivity, and
weak emphasis on explainability and maintainability. Addressing these gaps requires coordinated efforts to build standardized benchmarks, promote reproducible testbeds, and integrate interdisciplinary perspectives spanning power systems engineering, cybersecurity, and human factors. Motivated by the preceding literature, this review synthesizes ML and DL contributions specifically targeted at FDI and emerging attacks, while emphasizing reproducibility, adversarial robustness, interpretability, and deployment readiness. The next sections describe our review methodology, selection criteria, and a structured taxonomy that groups studies by learning paradigm, attack type, and deployment layer. #### 3. REVIEW METHODOLOGY A systematic review requires a rigorous and transparent methodology to ensure reproducibility, reliability, and relevance of the selected studies. This section outlines the procedures employed in this work, including the search strategy, inclusion and exclusion criteria, study selection, data extraction, and formulation of research questions. ## A. Search Strategy To identify literature on artificial intelligence in smart grid cybersecurity, a comprehensive search was conducted across major scholarly databases, including IEEE Xplore, ACM Digital Library, Scopus, Web of Science, ScienceDirect, and Google Scholar. Keywords and their combinations were employed to capture relevant studies, such as "Al in smart grid cybersecurity," "machine learning in smart grid security," "deep learning false data injection attacks," "FDIA detection," "cyber-physical system attacks," and "emerging smart grid threats." Boolean operators (AND/OR) and truncations were used to refine searches. Table 1 presents a summary of the keyword groups and combinations used. ## **B.** Inclusion and Exclusion Criteria To ensure the selection of high-quality and relevant studies, the following criteria were applied: ## Inclusion Criteria - 1. Peer-reviewed journal and conference articles published between 2010 and 2025. - 2. Studies written in English. - 3. Research focusing on Al, machine learning (ML), or deep learning (DL) applications in smart grid cybersecurity. - 4. Studies addressing at least one attack category, such as false data injection attacks (FDIAs), denial-of-service (DoS), replay attacks, or data integrity threats. - 5. Empirical or analytical studies presenting implementation, simulation, or evaluation results. #### **Exclusion Criteria** - 1. Articles not directly related to smart grid cybersecurity. - 2. Works are limited to cryptography or conventional intrusion detection methods without Al integration. - 3. Non-peer-reviewed sources such as white papers, blogs, or patents. - 4. Studies lacking sufficient technical details or experimental validation. #### C. Selection of the Study The selection process followed a multi-stage filtering approach. First, duplicate results across databases were removed. Titles and abstracts were then screened for relevance. Full-text reviews were performed to assess compliance with the inclusion and exclusion criteria. Out of an initial pool of 1,120 studies, 932 remained after duplicate removal. After abstract and title screening, 412 articles were eligible for full-text analysis. Following rigorous evaluation, 148 studies were deemed relevant and included in the final systematic review. The entire process adhered to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to maintain transparency and rigor. #### D. Extraction of the Data For the selected studies, data extraction was carried out using a structured framework to ensure consistency. Each article was evaluated and tabulated based on: - 1. Reference and Year bibliographic details. - 2. Research Focus primary cybersecurity problem addressed (e.g., FDIA detection, anomaly detection, malware detection). - 3. Al/ML/DL Techniques specific models and algorithms applied (e.g., SVM, random forest, CNN, RNN, hybrid approaches). - 4. Datasets/Simulation Environment datasets used for evaluation, whether real-world smart grid data, simulated IEEE test systems, or synthetic datasets. - 5. Findings and Contributions key contributions, performance metrics, and limitations identified. #### E. Research Questions (RQs) The study aims to systematically answer the following research questions: - **RQ1**: What are the prevailing Al, ML, and DL techniques used in smart grid cybersecurity, and how effective are they against various attack vectors? - RQ2: How have AI-based methods advanced the detection and mitigation of false data injection attacks in smart grids? - **RQ3**: What datasets, benchmarks, and test systems are commonly used, and what gaps exist in their applicability to real-world scenarios? - **RQ4**: What are the major challenges and limitations of applying Al in smart grid cybersecurity, including scalability, adaptability, and explainability? - **RQ5**: Which emerging threats in smart grids remain underexplored, and how can Al methodologies be extended to address them? - **RQ6**: How do hybrid approaches combining ML, DL, and domain knowledge compare with traditional AI methods in terms of accuracy, robustness, and computational efficiency? - **RQ7**: What promising future research directions exist for leveraging Al in enhancing the resilience of smart grid cybersecurity? | Group | Keywords/Terms | Example Combinations | |------------------------|---|---| | Smart Grid | "smart grid", "power grid", "electrical grid", "cyber-physical system" | "smart grid" AND "cybersecurity" | | Cybersecurity | "cybersecurity", "cyber attack", "threat detection", "anomaly detection", "intrusion detection" | "smart grid" AND "cyber
attack" | | Attack Types | "false data injection attack (FDIA)", "denial of service (DoS)", "replay attack", "data integrity attack", "malware" | "FDIA" OR "false data injection" AND "smart grid" | | AI/ML/DL
Techniques | "artificial intelligence", "machine learning", "deep learning", "neural network", "support vector machine (SVM)", "random forest", "CNN", "RNN", "reinforcement learning" | | | Application Focus | "attack detection", "attack mitigation", "intrusion prevention", "resilience", "stability", "robustness" | "deep learning" AND "intrusion detection in smart grid" | | Benchmark/Datasets | "IEEE test system", "real-world dataset", "simulation | "IEEE 118 bus" AND "false data injection detection" | Table 1. Keyword groups and combinations used in the search strategy #### 4. STUDY DISTRIBUTION ANALYSIS Before synthesizing the contributions of the reviewed studies toward Al-based cybersecurity in smart grids, it is essential to analyze how the final selected works are distributed across countries, years, keywords, research domains, and publication outlets. This distributional analysis provides insights into global research participation, temporal growth patterns, and dominant areas of focus within the field. ## A. Country-wise Distribution Figure 2 illustrates the geographic distribution of the reviewed studies. China emerges as the leading contributor with the highest number of publications on machine learning and deep learning approaches for smart grid cybersecurity. The United States follows closely, with substantial contributions addressing both theoretical advancements and industrial deployment challenges. India, the United Kingdom, Germany, and South Korea also demonstrate strong research activity. Meanwhile, contributions from developing regions such as Africa and parts of the Middle East remain limited, reflecting disparities in research capacity and access to experimental infrastructure. Collectively, the findings indicate that research in this area is concentrated in technologically advanced nations, though emerging economies are gradually contributing to the body of knowledge. Figure 2. Country-wise Distribution of Selected Studies #### **B. Temporal Distribution** Figure 3 presents the year-wise publication trend of selected studies. Early contributions appeared around 2010, coinciding with the rise of false data injection attack research in smart grids. Publications grew steadily between 2014 and 2017 as machine learning methods such as support vector machines and random forests became widely applied. From 2018 onward, there has been a marked surge in deep learning-based studies, including convolutional and recurrent neural networks, reflecting the broader adoption of Al across cybersecurity domains. The peak in publications occurred between 2020 and 2023, suggesting accelerated interest driven by increasing cyberattack sophistication and the growing deployment of smart grid technologies worldwide. Figure 3. Year-wise Publication Trend Of Selected Studies # C. Keyword Distribution Keyword analysis, summarized in Figure 4, reveals recurring themes in the reviewed studies. Dominant terms include "false data injection," "smart grid," "machine learning," "deep learning," "intrusion detection," and "resilience." These reflect the centrality of attack detection and system robustness in this field. Less frequently used terms such as "adversarial learning," "federated learning," and "explainable AI" highlight emerging but underexplored areas that may define the next wave of research. The keyword landscape underscores that while detection and mitigation remain core, there is a gradual pivot toward transparency, scalability, and adaptability of AI models. Figure 4. Word cloud of the study keywords. ## D. Research Area Distribution Figure 5 depicts the distribution of studies by research domain. The largest cluster of contributions addresses false data injection attack detection, followed by general intrusion detection systems and anomaly detection
frameworks. Other emerging categories include DoS detection, adversarial robustness, and privacy-preserving learning. Notably, adversarial Al in smart grid contexts remains sparsely explored, representing a critical research opportunity. The distribution confirms that while FDIA remains the most widely studied, broader classes of cyber-physical threats are beginning to attract scholarly attention. Figure 5. Distribution of studies by research domain #### **E. Publication Venues** Figures 6 and 7 summarize the distribution of journal and conference publications. Approximately 65% of the reviewed studies were published in peer-reviewed journals, while 35% appeared in conference proceedings. IEEE, Elsevier, Springer, and MDPI dominate journal publications, reflecting their established presence in power systems and AI research. On the conference side, IEEE Xplore and ACM host the majority of contributions, particularly those emphasizing methodological innovations. The preference for journals suggests a maturing research domain where reproducibility and long-term scholarly impact are prioritized. Figure 6. Distribution of journal and conference publications Figure 7. Distribution of Journal Publications by Publisher ## 5. AREAS OF AI IN SMART GRID CYBERSECURITY The application of artificial intelligence (AI) to smart grid cybersecurity has grown into a multifaceted domain addressing the evolving cyber-physical threats to modern energy systems. Given the increasing reliance on digitalization, interconnected devices, and distributed energy resources, the cybersecurity of smart grids requires adaptive, scalable, and intelligent solutions. Through a rigorous review and classification process, eleven critical areas of AI applications in smart grid cybersecurity were identified (see Fig. 9). These areas were selected based on scope, relevance, maturity of research, and their ability to reflect current and future challenges in the field. The categorization ensures focus and practical alignment with the most pressing issues while providing pathways for future investigations. The eleven areas include: intrusion detection systems (IDS), anomaly detection and prevention, malware detection and classification, privacy-preserving AI (blockchain-AI integration), adversarial machine learning defenses, secure data fusion and aggregation, false data injection attack (FDIA) detection, cyber-physical situational awareness, AI-based threat intelligence, trust and authentication mechanisms, and explainable AI (XAI) for decision transparency. Each area encompasses unique challenges and opportunities in defending the smart grid against cyber adversaries. By concentrating on these domains, researchers and practitioners can enhance resilience, maintain operational stability, and secure critical infrastructures. Figure 8. Categorization of AI in Smart Grid Cybersecurity Areas ## A. AI-BASED INTRUSION DETECTION SYSTEMS Intrusion Detection Systems (IDS) are one of the most critical defense mechanisms for safeguarding the cyber layer of smart grids. Their primary goal is to identify malicious activities or abnormal behaviors in communication channels, operational commands, and device interactions that could disrupt power delivery or compromise grid stability. While traditional signature-based IDS relies on pre-defined attack patterns, it often fails to detect novel or zero-day attacks. Al-based IDS, in contrast, employs supervised, unsupervised, and hybrid machine learning models to dynamically adapt to new threats and enhance detection accuracy, resilience, and scalability. Among the most widely used AI techniques in IDS are deep neural networks (DNNs), convolutional neural networks (CNNs), support vector machines (SVMs), and clustering algorithms. These approaches have demonstrated improved accuracy in classifying both known and unknown attack vectors in smart grid environments. For instance, a hybrid IDS combining clustering for anomaly detection with classification algorithms for labeling malicious events has achieved significantly lower false positive rates compared to conventional systems. Moreover, reinforcement learning is increasingly applied to optimize IDS decision-making in dynamic grid environments by adapting to evolving attacker strategies. A key innovation in recent years is the application of federated learning-based IDS frameworks, which enable multiple substations or distributed energy resources to collaboratively train models without sharing raw data. This approach preserves privacy and enhances resilience against attacks while maintaining model accuracy across distributed grid infrastructures. Studies also report the integration of blockchain with IDS, where blockchain ensures trust in shared security updates while Al models provide adaptive threat detection. Table 2 presents some of the main elements of current studies on Al-based IDS in smart grid cybersecurity. Various datasets, simulation platforms, and evaluation metrics have been utilized in this field. Benchmark datasets such as NSL-KDD, UNSW-NB15, CICIDS2017, and ToN-loT are among the most commonly employed for IDS training and testing. Simulation tools like MATLAB/Simulink, OMNeT++, and GridSim have also been leveraged to emulate communication networks and grid operations under attack conditions. From Table 2, it is evident that diverse research efforts span from deep learning-based feature extraction, federated model deployment, adversarial robustness testing, to cross-domain attack classification. Another crucial component of Al-driven IDS is explainability. Operators require not only accurate detections but also insights into why an event has been flagged as malicious. Recent work in explainable Al (XAI) applied to IDS has enabled human operators to interpret black-box models, fostering trust and supporting faster decision-making in real-world operations. Furthermore, resilient architectures capable of real-time processing have been proposed, using edge computing and lightweight Al models to reduce latency in high-frequency monitoring tasks. In addition to improving detection capabilities, research emphasizes IDS integration with broader smart grid defense strategies. For example, coupling IDS alerts with automated incident response systems can prevent cascading failures by isolating compromised nodes. Likewise, adaptive IDS leveraging online learning can continuously retrain models as new attack vectors emerge, ensuring relevance in dynamic threat landscapes. From a global perspective, significant contributions to Al-based IDS research have come from countries such as the United States, China, India, and European Union nations, which lead in developing both novel algorithms and real-world testbeds. The distribution of studies indicates a growing international consensus on the necessity of Al-enhanced IDS as the first line of defense for modern power infrastructures. Year-wise publication trends highlight rapid growth since 2016, coinciding with the increased deployment of smart meters, phasor measurement units (PMUs), and IoT devices in energy systems. Overall, Al-based IDS research reflects a strong convergence of machine learning innovation, real-time cyber defense, and privacy-preserving technologies. As the smart grid becomes more digitized and interconnected, future directions in IDS research are likely to focus on adversarial robustness, cross-layer defense integration, and scalable federated frameworks tailored for large, heterogeneous grid environments. | Reference and Year | Year | Perform Work | Dataset/Testing
mechanism | Finding and Contribution | |--|------|---|--|---| | [36] Abou-Elasaad, M. M.,
Sayed, S. G., & El-Dakroury, M.
M. (2024). Smart Grid intrusion
detection system based on Al
techniques. | 2024 | Presents an Al-based IDS framework specifically tailored for smart grid cyberattack scenarios. | Simulated power grid cyberattack scenarios and performance benchmarks were used for evaluation. | Demonstrated improved detection accuracy of AI-based IDS approaches compared to legacy methods. | | [[37] AlHaddad, U., Basuhail, A.,
Khemakhem, M., Eassa, F. E., &
Jambi, K. (2023). Ensemble
Model Based on Hybrid Deep
Learning for Intrusion Detection
in Smart Grid Networks. | 2023 | Proposes an ensemble hybrid deep learning approach for detecting network intrusions in smart grids. | Network traffic datasets, including simulated attacks, facilitate detection performance measurement. | The hybrid ensemble outperforms single ML models, achieving higher accuracy and robustness. | | [38] Sharma, A., et al. (2025). Artificial intelligence- augmented smart grid architecture for secure and efficient EV charging | 2025 | Discusses an Al-
augmented architecture
for enhancing IDS
security and operational
efficiency of smart grid | Case studies using smart grid testbed EV charging data and model simulations. | Showed significant improvement in threat detection and management for EV charging stations. | | infrastructure. | | EV charging. | | | |---|------|---
---|---| | [39] Singh, A. R., et al. (2025). Al-enhanced smart grid framework for intrusion detection and mitigation in electric vehicle charging networks. | 2025 | Presents an Al-driven
end-to-end IDS and
mitigation framework for
smart grids serving EV
infrastructures. | Simulated grid network
datasets, EV charging
telemetry, and testbed-
based IDS evaluation. | Integrated intrusion detection and mitigation to automate operator response. | | [40] Ghadi, Y. Y., et al. (2025). A hybrid Al-Blockchain security framework for smart grids. | 2025 | Introduces a hybrid
framework combining Al-
based IDS with
blockchain for enhanced
smart grid security. | Evaluation of simulated smart grid and blockchain-secured communication datasets. | Hybridization improves both detection rates and auditability for smart grid security events. | | [41] Islam, U., et al. (2025). Alenhanced intrusion detection in smart renewable energy grids: A multi-stage detection framework. | 2025 | Proposes a multi-stage
Al-driven IDS for
intrusion detection in
renewable energy grid
systems. | Multiple datasets from
smart renewable grid
simulations for layered
detection evaluations. | Multi-stage approach
demonstrated higher attack
detection and reduced false
alarms. | | [42] Xie, R., Wang, B., & Xu, X. (2025). A novel federated deep learning for intrusion detection in smart grid cyber-physical systems. | 2025 | Develops a federated deep learning architecture for collaboratively training IDS models across nodes. | Partitioned testbed and
benchmark datasets
representing distributed
smart grid nodes. | Shows federated training preserves privacy and achieves near-centralized detection performance. | | [43] Verma, S., & Raj, A. (2025).
A short report on deep learning
synergy for decentralized smart
grid cybersecurity. | 2025 | Explores the use of decentralized AI for scalable intrusion detection in large-scale smart grids. | Algorithms validated on distributed grid monitoring datasets and synthetic attack injections. | Provides actionable strategies for deploying decentralized IDS to increase detection rates. | | [44] Kesavan, V. T., et al. (2025).
Anomaly detection with the grid
sentinel framework for electric
car charging stations against
intrusions. | 2025 | Presents a specialized anomaly detection system to safeguard EV charging infrastructures within the smart grid. | EV charging telemetry streams and simulated network attack injections were evaluated. | System improves detection of targeted EV charging station threats. | | [45] Alsubaei, F. S., et al. (2025).
Smart deep learning model for
enhanced IoT intrusion
detection using optimized
preprocessing and
hyperparameter tuning. | 2025 | Optimizes deep learning preprocessing and hyperparameters for IoT-centric smart grid IDS. | Benchmark IoT and grid
attack data used to
validate optimized deep
learning workflow. | Hyperparameter optimization and tailored preprocessing boost IDS precision and efficiency. | | [46] Hasan, M. K., et al. (2024). A review of machine learning techniques for secure cyberphysical systems in smart grid networks. | 2024 | Reviews state-of-the-art
ML techniques applied to
IDS in smart grid CPS
environments. | Comprehensive analysis of published testbeds and benchmark datasets in the area. | Synthesizes trends, challenges, evaluation practices, and potential solutions for IDS methods. | | [47] Duan, J. (2024). Deep
learning anomaly detection in
Al-powered intelligent power
distribution systems. | 2024 | Applies deep learning for real-time anomaly detection in smart grid power distribution. | Real and synthetic power distribution telemetry is offered for model validation. | Demonstrates improved real-
time anomaly alerts for
potential cyberattacks. | | [48] Paul, B., et al. (2024).
Potential smart grid
vulnerabilities to cyber attacks: | 2024 | Comprehensively analyzes vulnerabilities and possible IDS | Meta-analysis of real-
world and simulated
vulnerabilities, datasets, | Highlights the most exploited attack vectors and effective Aldriven IDS defenses. | | A comprehensive analysis. | | solutions in smart grids. | and case studies. | | |--|------|---|---|--| | [49] Sharma, A., et al. (2024).
Anomaly detection in smart grid
using optimized extreme
gradient boosting classifier with
SCADA system. | 2024 | Applies XGBoost-based anomaly detection to SCADA smart grid systems. | Supervised learning
evaluations on SCADA-
like and synthetic smart
grid datasets. | Finds XGBoost offers high
performance for anomaly
detection in grid SCADA
environments. | | [50] Sowmya, T., et al. (2023). A
comprehensive review of Al Al-
based intrusion detection
system for securing IoT. | 2023 | Provides an overview and
typology of Al-based IDS
approaches for IoT-
enabled smart grids. | Synthesis of published IoT testbeds and attack datasets used in IDS literature. | Offers a taxonomy of AI IDS approaches and insights into performance benchmarking. | | [51] Mohsen, S., et al. (2023).
Efficient Artificial Neural
Network for Smart Grid Stability
Prediction with Decentralized
Smart Grid Control Systems. | 2023 | Assesses ANNs for stability prediction and intrusion identification in smart control systems. | Testbeds involving decentralized smart grid control and synthetic anomaly injection. | Reports improved predictive ability and cyberattack detection from applied ANNs. | | [52] Kaur, R., et al. (2023).
Artificial intelligence for
cybersecurity: Literature review
and future research directions. | 2023 | Reviews broad AI applications to cybersecurity, with extensive smart grid IDS coverage. | Meta-survey of IDS experimentations and datasets spanning smart grid applications. | Establishes state-of-the-art, research gaps, and future IDS research directions. | | [53] Panthi, M., & Das, K. (2022).
Intelligent Intrusion Detection
Scheme for Smart Power Grid
Systems using ensemble
learning and hyperparameter
optimization. | 2022 | Advances in ensemble learning and HPO for IDS in smart grid power systems. | Performance tested on public and simulated network intrusion datasets. | Combined ensemble and HPO increases IDS accuracy and robustness across attack types | | [54] Ndibwile, J. D., et al. (2022).
Artificial Intelligence-Based
Smart Grid Vulnerabilities and
Potential Solutions. | 2022 | Surveys Al-driven IDS countermeasures for current and emerging vulnerabilities. | Meta-analysis of published datasets, testbeds, and simulations for smart grid security. | Identifies security gaps and recommends novel AI methods for IDS research. | | [55] Corbett, C., Weber, C. M., &
Anderson, T. R. (2024). Smart
Grid Cybersecurity in the Age of
Artificial Intelligence. | 2024 | Reviews modern
cybersecurity trends and
AI-based IDS in power
system infrastructure. | Analysis based on published literature and use cases in real smart grid deployments. | Assesses current readiness, adoption barriers, and future AI-IDS opportunities in smart grids. | | [56] Maiti, S., & Dey, S. (2024).
Smart Grid Security: A Verified
Deep Reinforcement Learning
Framework to Counter Cyber-
Physical Attacks. | 2024 | Proposes a deep
reinforcement learning
(DRL) based IDS validated
in smart grid CPS. | Benchmarked in a simulated smart grid CPS, using time-series telemetry and incident scenarios. | DRL framework adaptively learns defense strategies for evolving threats. | | [57] Ji, C., et al. (2024). A hybrid
evolutionary and machine
learning approach for
cybersecurity enhancement in
Smart Grid Control Systems. | 2024 | Presents a hybrid
evolutionary/ML
approach for smart grid
control cybersecurity. | Evaluation via synthetic
and real-world testbed
data mimicking cyber
attack scenarios. | Hybrid models have been shown to improve IDS resilience and reduce attack impacts. | | [58] Naeem, H., et al. (2025).
Classification of intrusion
cyber-attacks in smart power
grids using ensemble learning
techniques. | 2025 | Employs ensemble learning for cyberattack classification in smart grids. | Benchmark smart grid
datasets containing
labeled cyberattack
traces. | Ensemble techniques boost accuracy in differentiating among attack types. | | [59] Nemade, B., et al. (2024).
Revolutionizing smart grid
security: a holistic cyber defence
framework with machine
learning integration. | 2024 | Proposes a holistic
defense framework
integrating various ML
algorithms for IDS. | Smart grid
communication
experiments with
testbeds and synthetic
intrusion data. | A holistic solution
demonstrated improved
defense against sophisticated
threats. | |---|------|---
---|---| | [60] Alam, M. M., et al. (2025).
Artificial intelligence integrated
grid systems: Technologies,
applications, and challenges. | 2025 | Reviews AI integration challenges and applications, with dedicated IDS coverage. | Survey of technology
adoption in grid utilities
and case studies of Al-
IDS deployments. | Identifies adoption bottlenecks and open research problems for IDS. | | [61] Ferrag, M. A., Friha, O.,
Hamouda, D., Maglaras, L., &
Janicke, H. (2022). Edge-IloTset:
A new comprehensive, realistic
cybersecurity dataset of IoT and
IIoT applications for centralized
and federated learning. | 2022 | Introduces Edge-IloTset,
a dataset supporting AI
IDS for IoT/IloT in smart
grid contexts. | Curated real-
world/realistic IIoT
attack scenarios for
model training/testing. | The dataset supports the development/evaluation of ML IDS under distributed learning regimes. | | [62] Moustafa, N., & Slay, J. (2015). UNSW-NB15: a comprehensive data set for network intrusion detection systems. | 2015 | Proposes UNSW-NB15
benchmark dataset for
evaluating smart grid IDS
algorithms. | The dataset contains labeled network traffic for diverse cyberattack detection research. | Extensively used as a standard benchmark for smart grid intrusion algorithms. | | [63] Koroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull, B. (2019). Towards the development of a realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. | 2019 | Describes the creation of
Bot-loT, a realistic IoT-
suite dataset for intrusion
and anomaly detection
model benchmarking. | Realistic IoT device
emulation and synthetic
botnet attack
generation. | Widely used for developing and testing IDS specific to IoT/smart grid environments. | | [64] Al-Qirim, N., et al. (2025).
Cyber threat intelligence for
smart grids using knowledge
graphs and digital twins. | 2025 | Applies Al-generated threat intelligence, knowledge graphs, and digital twins for smart grid protection. | Evaluation using digital twin simulation environments, modeling grid threats. | Demonstrated contextualized and actionable intelligence for IDS tuning. | | [65] Dayaratne, T. T., et al. (2023). Improving Cybersecurity Situational Awareness in Smart Grid Environments Through Security-Aware Data Provenance. | 2023 | Focuses on security-
aware data provenance
as a supportive layer for
IDS situational awareness. | Power grid data provenance explorations using actual grid operation logs/scenarios. | Enhances overall grid protection by improving operator awareness and IDS response. | Table 2. Representative AI-based IDS Studies for Smart Grid Cybersecurity Figure 9. Year-wise distribution of Al-based IDS studies ## **B. ANOMALY DETECTION AND PREVENTION** Anomaly detection and prevention in smart grids play a central role in ensuring the reliability, security, and efficiency of modern power systems. Unlike traditional grid monitoring methods that rely on fixed thresholds or statistical averages, anomaly detection in smart grids must cope with the dynamic and heterogeneous nature of operational data streams, including voltage, frequency, current, and load profiles across distributed networks. The complexity of smart grids is further amplified by the integration of renewable energy sources, electric vehicles, and distributed energy resources, all of which introduce variability and potential vulnerabilities. Therefore, artificial intelligence approaches have become indispensable for identifying irregular patterns and preventing cascading failures. Machine learning techniques such as support vector machines have been widely used for anomaly detection due to their capability to handle high-dimensional data and separate abnormal patterns from normal operations with well-defined decision boundaries. These approaches have been successfully deployed for detecting voltage instabilities, load fluctuations, and maliciously altered signals. Similarly, autoencoders have gained prominence because of their ability to reconstruct normal operational states and flag deviations that may indicate anomalies. For instance, when trained on clean operational data, autoencoders can detect subtle irregularities in power flow or frequency variations that may be early indicators of equipment malfunction or cyber intrusion. Deep learning methods, particularly recurrent neural networks and long short-term memory (LSTM) architectures, have proven highly effective for temporal anomaly detection in smart grids. LSTM networks excel at capturing long-term dependencies in sequential data, enabling them to identify abnormal temporal correlations such as sudden frequency drops or load spikes that deviate from historical patterns. These models are crucial for anticipating time-dependent anomalies like those resulting from coordinated cyber-physical attacks or progressive equipment degradation. Convolutional neural networks have also been utilized to capture spatial correlations within grid sensor data, which makes them useful for detecting localized anomalies such as sudden outages or overloading in specific substations. Beyond detection, anomaly prevention mechanisms leverage Al-driven predictive analytics and reinforcement learning to propose corrective actions. Preventive strategies include adjusting load distribution, initiating demand-response mechanisms, or activating backup resources to stabilize the grid before anomalies escalate into large-scale disruptions. For example, reinforcement learning agents can be trained to optimize real-time control actions, balancing grid resilience against economic costs. In this way, anomaly prevention goes beyond passive monitoring and enables adaptive decision-making that strengthens operational reliability. Hybrid approaches that combine multiple AI models are increasingly being adopted to enhance robustness. For example, integrating statistical models with deep learning techniques provides a two-layer defense system, where statistical models serve as quick filters for potential anomalies and deep learning models perform more detailed verification. Ensemble learning frameworks also improve detection accuracy while reducing false alarm rates, which is critical to maintain operator trust in automated systems. Recent advances highlight the role of explainable AI in anomaly detection and prevention. Traditional blackbox models, while accurate, limit operators' ability to understand why specific anomalies were flagged. Explainable approaches provide transparency by attributing anomalies to specific input features such as voltage fluctuations, irregular frequency shifts, or communication delays. This interpretability enhances operator confidence and supports regulatory compliance, particularly in critical infrastructure sectors. In addition, anomaly detection and prevention research is increasingly integrating federated learning and edge intelligence to address privacy and scalability challenges. Federated learning enables multiple distributed grid operators to collaboratively train detection models without sharing raw data, ensuring privacy preservation while improving global model accuracy. Edge intelligence allows anomaly detection to occur closer to data sources, reducing latency and enabling rapid response in real time. Overall, anomaly detection and prevention in smart grids represent a multi-faceted challenge that requires combining advanced Al models with preventive strategies. By leveraging machine learning, deep learning, hybrid frameworks, and explainability, modern smart grids can achieve high detection accuracy, minimize false positives, and implement adaptive corrective actions that enhance resilience against both operational irregularities and malicious attacks. This evolution from simple detection toward proactive prevention reflects the future trajectory of smart grid cybersecurity and operational stability. | Reference and Year | Year | Perform Work | Dataset/Testing
mechanism | Finding and Contribution | |---|------|---|---|--| | [66] Banik, S., Saha, S. K., Banik, T.,
& Hossain, S. M. M. (2023).
Anomaly Detection Techniques in
Smart Grid Systems: A Review. | 2023 | Comprehensive review of anomaly detection techniques specifically applied to smart grid systems. | Literature survey across
various smart grid
datasets, PMU
measurements, and AMI
data sources | Systematizes anomaly detection methods for smart grids, identifies research gaps, and provides a taxonomy of techniques. | | [67]Rahman, H., Nazir, S., Anwer, F., & Siddique, F. (2023). Anomaly Detection in Smart Grid Networks Using Power Consumption Data. | 2023 | Develops an anomaly detection framework using power consumption patterns in smart grid networks | Smart grid power
consumption datasets
and synthetic anomaly
injection scenarios | Demonstrates effective detection of consumption anomalies and provides insights for grid operators. | | [68] Zhang, J. E., Wu, D., & Boulet,
B. (2021). Time Series Anomaly
Detection for Smart Grids: A
Survey. | 2021 | Survey of time-series
anomaly detection
methods applied to smart
grid telemetry and
monitoring |
Literature review across
PMU, AMI, and building
energy datasets;
benchmark and real
deployments cited | Systematizes time-series anomaly methods (statistical, ML, DL), highlights dataset gaps and evaluation practices. | | [69] Di, L., & Ziliang, Q. (2023).
Identification of Anomaly
Detection in Power System State
Estimation Based on Fuzzy C-
Means Algorithm. | 2023 | Proposes a fuzzy C-means clustering approach for anomaly detection in power system state estimation | Simulated power system state estimation data with injected anomalies and measurement errors | Shows fuzzy clustering effectively identifies state estimation anomalies and improves system monitoring. | | [70] Omol, E., Wanjiku, M., & Kamau, S. (2024). Anomaly Detection In IoT Sensor Data Using Machine Learning Techniques For Predictive Maintenance In Smart Grids. | 2024 | ML-based anomaly
detection for IoT sensors in
smart grids to enable
predictive maintenance | IoT sensor data from
smart grid components,
simulated fault
conditions, and real
telemetry streams | Demonstrates ML
techniques can predict
equipment failures and
reduce maintenance costs
in smart grids. | | [71] Yu, L., Zhang, X., Wang, Y., & Liu, Z. (2025). Anomaly Detection of Cyber Attacks in Smart Grid Communications Using Heuristics and Deep Learning Methods. | 2025 | A hybrid approach combining heuristics and deep learning for detecting cyber attacks in smart grid communications | Network traffic datasets,
cyber attack simulations,
and smart grid
communication protocol
analysis | Shows hybrid methods improve detection accuracy and reduce false positives for cyber attacks. | | [72] Noura, H. N., Salman, O.,
Chehab, A., & Couturier, R. | 2025 | Comprehensive overview of advanced ML | Survey of published datasets, testbeds, and | Provides roadmap for ML applications, identifies | | (2025). Advanced Machine
Learning in Smart Grids: An
overview of anomaly detection
and cybersecurity applications. | | techniques for anomaly detection and cybersecurity in smart grids | experimental setups
across smart grid security
research | challenges, and suggests future research directions. | |--|------|--|--|---| | [73] Farooq, A., Anwar, A., Iqbal, J., Rehman, A. U., & Shafiq, M. (2024). Securing the green grid: A data anomaly detection method for sustainable smart grid operations. | 2024 | Data-driven anomaly detection method focused on sustainable and green smart grid operations. | Sustainable energy
datasets, renewable
integration scenarios, and
green grid operational
data | Demonstrates that
anomaly detection can
support sustainable grid
operations and renewable
energy integration. | | [74] Akagic, A., Kurtovic, H., & Hadziahmetovic, N. (2024). Enhancing smart grid resilience with deep learning-based anomaly detection and intelligent mitigation. | 2024 | Deep learning framework
for anomaly detection with
integrated intelligent
mitigation strategies | Smart grid resilience
scenarios, deep learning
training datasets, and
mitigation response
evaluation | Shows DL-based detection with automated mitigation enhances overall grid resilience and response time. | | [75] Jiang, X., et al. (2025).
Research on Data Anomaly
Detection and Repair Methods
for Smart Meter Based on CNN-
LSTM Deep Learning Model. | 2025 | CNN-LSTM hybrid model
for detecting and repairing
data anomalies in smart
meter readings | Smart meter data with
synthetic and real
anomalies, time-series
validation, and repair
effectiveness metrics | Demonstrates a hybrid
CNN-LSTM approach that
effectively detects and
repairs smart meter data
anomalies. | | [76] Sharma, P., Gupta, R., & Singh, A. (2022). Anomaly Detection in Smart Meter Data for Preventing Power Outages and Wastage. | 2022 | Smart meter anomaly detection system designed to prevent power outages and energy wastage | Smart meter datasets,
outage correlation
analysis, and energy
consumption pattern
evaluation | Shows meter-level anomaly detection can predict and prevent outages while reducing energy waste. | | [77] Qaddoori, S. L., Al-Nidawi, Y., & Taha, M. Q. (2023). An embedded and intelligent anomaly power consumption detection system using machine learning methods. | 2023 | Embedded ML system for
real-time anomaly
detection in power
consumption patterns | Real-time power
consumption data,
embedded system
performance metrics, and
field deployment
validation | Demonstrates the feasibility of embedded ML systems for distributed anomaly detection in power grids. | | [78] Liu, X., Golab, L., Golab, W.,
Ilyas, I. F., & Jin, S. (2016). Smart
Meter Data Analytics: Systems,
Algorithms and Benchmarking. | 2016 | Comprehensive framework
for smart meter data
analytics, including
anomaly detection
algorithms | Large-scale smart meter
datasets, benchmarking
methodologies, and
algorithm performance
comparisons | Establishes benchmarks
for smart meter analytics
and provides foundational
algorithms for anomaly
detection. | | [79] Kaleta, J., Dubinski, J.,
Wojdan, K., & Swirski, K. (2021).
Detection of anomalous
consumers based on smart meter
data. | 2021 | Method for detecting anomalous energy consumption patterns using smart meter data analysis | Smart meter
consumption datasets,
consumer behavior
analysis, and anomaly
classification metrics | Identifies consumer-level anomalies effectively and provides insights for demand-side management. | | [80] Qiao, L., Gao, W., Li, Y., Guo,
X., Hu, P., & Hua, F. (2023). Smart
Grid Outlier Detection Based on
the Minorization–Maximization
Algorithm. | 2023 | Statistical approach using
Minorization-Maximization
algorithm for outlier
detection in smart grids | Smart grid operational
data, statistical validation
datasets, and outlier
injection scenarios | Shows MM algorithm provides robust outlier detection with theoretical guarantees and practical effectiveness. | | [81] Raihan, A. S., & Ahmed, I.
(2023). A Bi-LSTM Autoencoder
Framework for Anomaly
Detection – A Case Study of a
Wind Power Dataset. | 2023 | Bi-directional LSTM
autoencoder for anomaly
detection in renewable
energy systems,
specifically wind power | Wind power generation
datasets, time-series
anomaly scenarios, and
autoencoder
reconstruction analysis | Demonstrates that Bi-
LSTM autoencoders
effectively detect
anomalies in renewable
energy time-series data. | |--|------|--|--|--| | [82] Preeti, G., & Anitha Kumari,
K. (2021). An Introductory Review
Of Anomaly Detection Methods
In Smart Grids. | 2021 | Introductory survey of various anomaly detection methods applicable to smart grid systems | Literature review of smart
grid anomaly detection
papers, datasets, and
evaluation
methodologies | Provides a comprehensive introduction to anomaly detection in smart grids and identifies key research areas. | | [83] Shrestha, R., Mohammadi, M., Sinaei, S., Boddapati, V., Majidzadeh, K., & Babagoli, M. (2024). Anomaly detection based on LSTM and autoencoders for smart electrical grids. | 2024 | LSTM and autoencoder-
based approach for
anomaly detection in
smart electrical grid
systems | Smart grid time-series
data, LSTM training
datasets, and
autoencoder
reconstruction error
analysis | Shows combined LSTM-
autoencoder approach
improves anomaly
detection accuracy in
electrical grid data. | | [84] Song, Y., Kim, J., Park, S., &
Lee, H. (2024). Unsupervised
anomaly detection of industrial
building energy consumption
data using ensemble learning. | 2024 | Unsupervised ensemble learning approach for detecting anomalies in industrial building energy consumption | Industrial building energy
datasets, ensemble
model validation, and
unsupervised learning
evaluation | Demonstrates that
ensemble methods
improve unsupervised
anomaly detection in
building energy systems. | | [85] Patil, R. S., Aware, M. V., & Junghare, A. S. (2025).
Autoencoder-Based Anomaly
Detection of Electricity Theft in
Smart Grid Distribution Systems. | 2025 | Autoencoder-based
system for detecting
electricity theft anomalies
in smart grid distribution
networks | Electricity consumption
patterns, theft simulation
datasets, and distribution
system monitoring data | Shows autoencoders effectively detect electricity theft patterns and reduce revenue losses. | | [86] Duan, J. (2024). Deep learning anomaly detection in Alpowered intelligent power distribution systems. | 2024 | Deep learning framework
for anomaly detection in
Al-enhanced power
distribution systems | Al-powered distribution
system data, deep
learning model
training,
and intelligent system
validation | Demonstrates that deep learning enhances anomaly detection capabilities in intelligent distribution systems. | | [87] Al-Karkhi, M. I., Abbas, A. H.,
& Al-Sudani, A. A. (2024).
Anomaly Detection in Electrical
Systems Using Machine Learning:
A Comprehensive Review. | 2024 | Comprehensive review of machine learning approaches for anomaly detection in electrical systems. | Survey of electrical
system datasets, ML
algorithm comparisons,
and performance
evaluation studies | Provides a systematic comparison of ML methods and guidelines for selecting appropriate techniques. | | [88] Park, S. W., Ko, J., Baek, J., & Yoon, M. (2024). Anomaly Detection in Power Grids via Context-Agnostic Multivariate Time Series Analysis. | 2024 | Context-agnostic approach
for multivariate time series
anomaly detection in
power grids | Multivariate power grid
time series, context-
independent validation,
and cross-system
evaluation | Shows context-agnostic methods provide robust anomaly detection across diverse power grid configurations. | | [89] Wang, B., Zhou, Y., Ge, L., & Kung, S. Y. (2025). Large-model-based smart agent for time series anomaly detection in power systems. | 2025 | Large language model-
based intelligent agent for
time series anomaly
detection in power
systems. | Power system time series
data, large model training
datasets, and agent-
based system evaluation | Demonstrates that large models can create intelligent agents that improve time series anomaly detection. | | [90] Singh, J., Kumar, A., & Sharma, P. (2025). Anomaly Detection in Solar Power Systems Using Deep Learning for Smart Grid Cybersecurity. | 2025 | Deep learning approach
for anomaly detection in
solar power systems within
a smart grid cybersecurity
context | Solar power generation
data, cybersecurity threat
scenarios, and deep
learning model validation | Shows deep learning effectively detects anomalies in solar systems and enhances cybersecurity. | |--|------|---|---|---| | [91] Li, X., et al. (2025). Anomaly detection method for power system information security using multimodal data fusion. | 2025 | Multimodal data fusion
approach for anomaly
detection in power system
information security | Multi-source power
system data, information
security datasets, and
fusion algorithm
evaluation | Demonstrates that multimodal fusion improves anomaly detection accuracy for power system security. | | [92] Chen, Y., Wang, H., & Zhang,
L. (2025). Real-Time Anomaly
Detection in Smart Grid Networks
Using Deep Learning with Cross-
Domain Generalization. | 2025 | Real-time deep learning
system with cross-domain
generalization for smart
grid anomaly detection | Real-time grid data
streams, cross-domain
validation datasets, and
generalization
performance metrics | Shows deep learning with domain generalization enables effective real-time anomaly detection. | | [93] Asefi, S., Zhou, Y., Lyu, C., & Panteli, M. (2023). Anomaly detection and classification in power system state estimation: A comprehensive review. | 2023 | Comprehensive review of anomaly detection and classification methods in power system state estimation | State estimation datasets, classification performance analysis, and comparative evaluation studies | Provides a systematic review of state estimation anomaly methods and identifies best practices. | | [94] Kumar, S., et al. (2025).
Enhanced Data-Driven
Framework for Anomaly
Detection in IED-based Smart
Grid Systems. | 2025 | Enhanced data-driven
framework for anomaly
detection in Intelligent
Electronic Device-based
smart grids | IED operational data,
smart grid
communication
protocols, and framework
validation experiments | Demonstrates an enhanced framework that improves anomaly detection in IED-based smart grid systems. | | [95] Zhao, M., et al. (2025). Optimized Two-Stage Anomaly Detection and Recovery in Smart Grid Communication Networks. | 2025 | Optimized a two-stage
approach for anomaly
detection and automated
recovery in smart grid
communications | Smart grid
communication network
data, two-stage
optimization validation,
and recovery
effectiveness metrics | Shows two-stage approach shows both effective detection and automated recovery capabilities. | Table 3. Representative Anomaly Detection and Prevention Studies for Smart Grids Figure 10. Year-wise distribution of anomaly detection/prevention studies #### C. MALWARE DETECTION AND CLASSIFICATION Malware poses one of the most persistent and disruptive threats to the cybersecurity of smart grids, primarily targeting smart meters, intelligent electronic devices (IEDs), and supervisory control and data acquisition (SCADA) systems. The integration of distributed energy resources, IoT devices, and advanced metering infrastructures expands the attack surface, creating opportunities for adversaries to launch malware campaigns that compromise grid stability, disrupt communication, or manipulate operational data. The complexity of smart grid architectures makes early detection and accurate classification of malware essential for safeguarding critical infrastructure. Artificial intelligence has transformed malware detection in smart grids by enabling automated analysis of large volumes of heterogeneous data. Traditional signature-based methods, while still valuable for detecting known malware, are increasingly limited against zero-day threats and polymorphic attacks. Al-driven techniques address these limitations by leveraging behavioral analysis, feature extraction, and machine learning classification to identify malicious code based on patterns rather than static signatures. For instance, binary classification algorithms such as support vector machines and random forests have been widely applied to detect malicious payloads embedded in firmware or data streams from smart devices. These methods provide a robust foundation for identifying attacks that attempt to masquerade as legitimate traffic. Deep learning approaches have further advanced malware detection by enabling automated feature learning from raw inputs, reducing dependence on handcrafted features. Convolutional neural networks (CNNs) have been used to detect malware by analyzing binary executables as grayscale images, where malicious code exhibits distinctive spatial structures. Similarly, recurrent neural networks (RNNs) and long short-term memory (LSTM) networks capture sequential dependencies in network traffic or system call traces, enabling precise detection of malware that evolves. These methods excel at uncovering temporal patterns that static analysis cannot reveal, making them highly effective for detecting sophisticated malware families. In addition to detection, malware classification has become a critical focus, as distinguishing between malware variants informs response strategies and containment measures. Multi-class classification techniques enable security systems to categorize malware into families based on behavioral or structural similarities. This classification allows operators to prioritize defensive measures, such as isolating infected nodes, blocking specific traffic flows, or updating intrusion prevention rules tailored to the malware type. Ensemble learning strategies, combining multiple classifiers, have demonstrated improved accuracy and resilience against evasion tactics commonly used by adversaries. Recent advancements emphasize the importance of modeling malware propagation across the communication topology of smart grids. Graph neural networks (GNNs) have emerged as a powerful tool for this task, as they naturally represent nodes (devices) and edges (communication links). By capturing relationships among interconnected components, GNNs can detect abnormal propagation dynamics indicative of malware spread. This approach not only identifies infected devices but also predicts which nodes are at risk, enabling proactive interventions that minimize cascading failures. Reinforcement learning is also being explored to optimize containment strategies in real time, guiding automated responses such as rerouting traffic, quarantining compromised devices, or dynamically adjusting access controls. Beyond detection and classification, explainable AI (XAI) is gaining traction to address the black-box nature of deep learning models in malware defense. Transparency in decision- making is critical for operators who must justify and trust automated security actions. XAI techniques highlight the features or traffic patterns that influenced a detection decision, allowing human operators to validate alerts, reduce false positives, and refine model training. This ensures a balance between high detection accuracy and operational trustworthiness in real-world deployments. The future of Al-based malware detection in smart grids is moving toward federated learning and privacy-preserving frameworks. Since data generated by smart meters and IEDs often contain sensitive consumer information, centralized training can raise privacy concerns. Federated learning addresses this by enabling local model training at edge devices, while sharing only model updates with central aggregators. This ensures collective intelligence against malware threats without exposing raw data. Additionally, integrating
Al-driven malware detection with blockchain-based logging systems provides immutable evidence of detected attacks, enhancing accountability and post-incident forensics. Conclusively, Al-powered malware detection and classification systems provide a comprehensive defense framework for smart grids, capable of detecting, categorizing, and mitigating threats in real time. By leveraging machine learning, deep learning, graph-based models, and reinforcement learning, these systems ensure faster containment of malware and reduce the likelihood of widespread disruption. As research evolves, the convergence of advanced Al methods with explainability and privacy-preserving approaches will be essential to achieving resilient and trustworthy malware defense in critical energy infrastructures. | Reference and Year | Year | Perform Work | Dataset/Testing
mechanism | Finding and Contribution | |--|------|--|--|--| | [96] Aziz, S., Irshad, M.,
Haider, S. A., Wu, J., Deng, D.
N., & Ahmad, S. (2022).
Protection of a smart grid
with the detection of cyber-
malware attacks using
efficient and novel machine
learning models. | 2022 | Develops efficient ML models
for detecting cyber-malware
attacks in smart grid
infrastructure protection | Smart grid simulation
datasets, malware attack
scenarios, and ML model
performance benchmarks | Demonstrates novel ML approaches achieve high accuracy in malware detection while maintaining computational efficiency. | | [97] Yeboah-Ofori, A. (2020).
Classification of malware
attacks using machine
learning in decision tree. | 2020 | Proposes decision tree-based
machine learning approach
for classifying different types
of malware attacks | Malware samples dataset,
attack classification
scenarios, and decision
tree algorithm validation | Shows decision tree algorithms effectively classify malware types with interpretable decision paths for security analysts. | | [98] Ghafoor, M. I., Bhatti, A.,
Ullah, I., & Ahmad, F. (2022).
Cyber-Malware Defense for
Smart Grids Using Machine
Learning Techniques. | 2022 | Comprehensive ML-based
defense framework
specifically designed for
cyber-malware threats in
smart grids | Smart grid
communication datasets,
cyber-malware injection
scenarios, and defense
mechanism evaluation | Develops robust ML defense mechanisms that significantly reduce malware success rates in smart grid environments. | | [99] Tightiz, L., Yang, H., &
Piran, M. J. (2024).
Implementing AI Solutions
for Advanced Cyber-Attack
Detection in Smart Grid
Systems. | 2024 | Advanced AI implementation
for detecting sophisticated
cyber-attacks including
malware in smart grid
systems | Multi-layer smart grid
testbeds, advanced
persistent threat
simulations, and Al model
validation | Al solutions provide superior detection capabilities for advanced malware and sophisticated cyber-attack patterns. | | [100] Wang, Z., Li, Y., Chen, X.,
& Zhang, H. (2022). Deep
Learning Based Malware
Traffic Classification for
Power Internet of Things. | 2022 | Deep learning approach for
classifying malware traffic in
Power loT environments
within smart grids | Power IoT network traffic
datasets, malware traffic
patterns, and deep
learning model training | Deep learning models
accurately classify malware
traffic patterns specific to
Power IoT systems. | | [101] Paul, B., Bhattacharya,
P., Kishore, A., Anand, D.,
Tiwari, A. K., & Singh, H.
(2024). Potential smart grid
vulnerabilities to cyber | 2024 | Comprehensive analysis of smart grid vulnerabilities with focus on malware and cyber attack vectors | Vulnerability assessment
datasets, attack vector
analysis, and
comprehensive security | Identifies critical smart grid
vulnerabilities and provides
systematic analysis of
malware attack pathways. | | | : | | <u> </u> | : | |--|------|--|---|---| | attacks: A comprehensive analysis. | | | evaluation | | | [102] Krause, T., Ernst, R.,
Klaer, B., Hacker, I., & Henze,
M. (2021). Cybersecurity in
Power Grids: Challenges and
Opportunities. | 2021 | Comprehensive study of cybersecurity challenges including malware threats in power grid systems | Real-world power grid
security incidents, threat
landscape analysis, and
security framework
evaluation | Systematizes cybersecurity challenges and provides roadmap for addressing malware and other cyber threats. | | [103] Ozen, A. (2017).
Malware in smart grid. | 2017 | Comprehensive thesis examining malware threats specific to smart grid environments and countermeasures | Smart grid malware case
studies, attack simulation
environments, and
defense mechanism
analysis | Provides foundational understanding of smart grid malware landscape and effective countermeasure strategies. | | [104] Ijeh, V. O., & Morsi, W. G. (2024). Smart grid cyberattack types classification: A fine tree bagging-based ensemble learning approach with feature selection. | 2024 | Ensemble learning approach
using fine tree bagging for
classifying various smart grid
cyberattack types | Cyberattack datasets with feature selection analysis, ensemble model validation, and classification performance metrics | Fine tree bagging
ensemble with feature
selection achieves superior
classification accuracy for
smart grid attacks. | | [105] Nemade, B., Shah, N.,
Bisen, D., & Chandel, A.
(2024). Revolutionizing smart
grid security: a holistic cyber
defence framework with
machine learning integration. | 2024 | Holistic cyber defense
framework integrating ML for
comprehensive smart grid
security including malware
detection | Multi-threat simulation
environments, ML
integration testbeds, and
holistic security
framework evaluation | Holistic ML-integrated framework provides comprehensive protection against diverse cyber threats including malware. | | [106] Chen, L., Wang, S., Liu,
Y., & Zhang, K. (2025). Al-
based threat detection in
critical infrastructure:
Applications for U.S. smart
grids. | 2025 | Al-based threat detection
system specifically designed
for critical infrastructure
protection in smart grids | U.S. smart grid
infrastructure datasets,
critical threat scenarios,
and Al detection model
validation | Al-based detection
systems effectively identify
and mitigate threats to
critical smart grid
infrastructure. | | [107] Sahani, N., Zhu, R., Cho,
J. H., & Liu, C. C. (2023).
Machine Learning-based
Intrusion Detection for Smart
Grid Computing: A Survey. | 2023 | Comprehensive survey of ML-based intrusion detection methods for smart grid computing environments | Survey of published
datasets, intrusion
detection benchmarks,
and comparative analysis
of ML approaches | Systematizes ML-based intrusion detection landscape and identifies research gaps in smart grid security. | | [108] Liu, H., & Zhang, M.
(2024). A single-class attack
detection algorithm for smart
grid AGC system based on
improved support vector
machine. | 2024 | Single-class SVM-based
attack detection algorithm
specifically for smart grid
Automatic Generation
Control systems | AGC system operational
data, single-class attack
scenarios, and improved
SVM algorithm validation | Improved SVM algorithm effectively detects attacks in AGC systems with minimal false positive rates. | | [109] Kumar, S., Singh, R., &
Gupta, A. (2024). Cyber
Security of Smart-Grid
Frequency Control: A Review
and Vulnerability Assessment
Framework. | 2024 | Comprehensive review and vulnerability assessment framework for smart grid frequency control cybersecurity | Frequency control system datasets, vulnerability assessment metrics, and comprehensive security evaluation | Provides systematic
vulnerability assessment
framework highlighting
critical security gaps in
frequency control. | | [110] Hamdi, N., Ayed, S.,
Chaari, L., & Ltifi, H. (2025).
Enhancing Cybersecurity in
Smart Grid: A Review of
Machine Learning-Based
Attack Detection Methods. | 2025 | Review of ML-based attack
detection methods with
focus on enhancing overall
smart grid cybersecurity | ML attack detection
literature review,
comparative analysis
datasets, and
performance evaluation
metrics | Identifies most effective ML approaches for attack detection and provides enhancement recommendations. | |---|------
--|---|---| | [111] Ahmad, T., Zhang, H., & Yan, B. (2021). A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. | 2021 | Review of forecasting models
for renewable energy
systems with implications for
smart grid security | Renewable energy
forecasting datasets,
smart grid integration
scenarios, and forecasting
model validation | Forecasting models support secure smart grid operations and help prevent security vulnerabilities. | | [112] Ravin, D., Kumar, M. S.,
& Patel, R. (2025). Malware
Classification Using Machine
Learning and Deep Learning:
A Comprehensive Approach. | 2025 | Comprehensive approach to
malware classification using
both traditional ML and deep
learning techniques | Large-scale malware
datasets, classification
algorithm benchmarks,
and comprehensive
evaluation metrics | Combined ML and DL approaches achieve state-of-the-art performance in malware classification tasks. | | [113] Farfoura, M. E., Barakat, M., Al-Dmour, J. A., & Al-Qutayri, M. (2025). A novel lightweight Machine Learning framework for IoT malware detection with limited computing burden. | 2025 | Lightweight ML framework
for IoT malware detection
designed for resource-
constrained smart grid
devices | IoT malware datasets,
resource constraint
simulations, and
lightweight algorithm
performance evaluation | Lightweight framework
maintains high detection
accuracy while minimizing
computational resource
requirements. | | [114] Johnson, R., Smith, K., & Williams, D. (2024). Cybersecurity in Critical Infrastructure: Protecting Power Grids and Smart Grids. | 2024 | Comprehensive analysis of cybersecurity measures for protecting critical power grid and smart grid infrastructure | Critical infrastructure
security case studies,
threat assessment data,
and protection measure
evaluation | Provides practical cybersecurity strategies for protecting critical power and smart grid infrastructure. | | [115] Alanazi, M., Almaiah, M.
A., & Al-Hadhrami, T. (2023).
SCADA vulnerabilities and
attacks: A review of the state-
of-the-art and
countermeasures. | 2023 | Comprehensive review of SCADA system vulnerabilities with focus on attacks and countermeasure strategies | SCADA vulnerability
databases, attack scenario
analysis, and
countermeasure
effectiveness evaluation | Systematizes SCADA vulnerabilities and provides comprehensive countermeasure recommendations for protection. | | [116] Prudhvi, B., Sekhar, T. C.,
& Kumar, M. S. (2025). Real-
Time Cyberattack Detection
for SCADA in Power System
Based on Deep Learning
Approach. | 2025 | Real-time deep learning
approach for detecting
cyberattacks in SCADA-based
power systems | Real-time SCADA
datasets, cyberattack
simulation scenarios, and
deep learning model
performance evaluation | Deep learning approach enables real-time cyberattack detection in SCADA systems with high accuracy. | | [117] Zhang, Y., Wang, L., Sun, W., Green, R. C., & Alam, M. (2011). Distributed intrusion detection system in a multilayer network architecture of smart grids. | 2011 | Distributed intrusion
detection system designed
for multi-layer smart grid
network architectures | Multi-layer smart grid
network simulations,
distributed detection
scenarios, and system
performance metrics | Distributed IDS
architecture provides
comprehensive intrusion
detection across smart grid
network layers. | | [118] Musleh, A. S., Chen, G.,
& Dong, Z. Y. (2019). A survey
on the detection algorithms | 2019 | Survey of detection
algorithms specifically
focused on false data | False data injection attack
datasets, detection
algorithm benchmarks, | Comprehensive survey
identifies most effective
detection algorithms and | | for false data injection attacks in smart grids. | | injection attacks in smart grid
systems | and comparative performance analysis | highlights research directions. | |--|------|--|---|---| | [119] Liang, G., Weller, S. R.,
Zhao, J., Luo, F., & Dong, Z. Y.
(2017). The 2015 Ukraine
blackout: Implications for
false data injection attacks. | 2017 | Analysis of 2015 Ukraine
blackout with focus on false
data injection attack
implications for smart grids | Ukraine blackout incident
analysis, attack vector
reconstruction, and
impact assessment data | Real-world incident
analysis provides critical
insights into false data
injection attack impacts
and prevention. | | [120] Hong, J., Liu, C. C., & Govindarasu, M. (2014). Integrated anomaly detection for cyber security of the substations. | 2014 | Integrated anomaly
detection system specifically
designed for substation
cybersecurity applications | Substation operational
data, anomaly detection
scenarios, and integrated
system performance
evaluation | Integrated approach provides comprehensive anomaly detection capabilities for substation cybersecurity. | | [121] Pan, S., Morris, T., &
Adhikari, U. (2015).
Developing a Hybrid
Intrusion Detection System
Using Data Mining for Power
Systems. | 2015 | Hybrid intrusion detection
system using data mining
techniques for power system
security applications | Power system operational
datasets, data mining
algorithm evaluation, and
hybrid system
performance metrics | Hybrid data mining approach improves intrusion detection accuracy and reduces false alarm rates. | | [122] Stellios, I.,
Kotzanikolaou, P., Psarakis,
M., Alcaraz, C., & Lopez, J.
(2018). A survey of iot-
enabled cyberattacks:
Assessing attack paths to
critical infrastructures and
services. | 2018 | Comprehensive survey of
IoT-enabled cyberattacks
with focus on critical
infrastructure attack
pathways | IoT attack vector analysis,
critical infrastructure
vulnerability assessment,
and attack path modeling | Systematizes IoT-enabled attack pathways and provides framework for critical infrastructure protection. | | [123] Deng, R., Xiao, G., Lu, R.,
Liang, H., & Vasilakos, A. V.
(2017). False data injection on
state estimation in power
systems—Attacks, impacts,
and defense: A survey. | 2017 | Comprehensive survey of false data injection attacks on power system state estimation with defense strategies | State estimation datasets,
false data injection
scenarios, and defense
mechanism evaluation | Provides systematic
analysis of false data
injection attacks and
effective defense
mechanism strategies. | | [124] Kimani, K., Oduol, V., &
Langat, K. (2019). Cyber
security challenges for IoT-
based smart grid networks. | 2019 | Analysis of cybersecurity
challenges specific to IoT-
based smart grid network
implementations | IoT-based smart grid
datasets, cybersecurity
challenge assessment,
and threat landscape
analysis | Identifies key cybersecurity
challenges for IoT-based
smart grids and provides
mitigation strategies. | | [125] Appiah-Kubi, P., & Malick, I. H. (2023). Machine learning algorithms and their applications in classifying cyber-attacks on a smart grid network. | 2023 | Application of various ML
algorithms for classifying
different types of cyber-
attacks in smart grid
networks | Smart grid cyberattack
datasets, ML algorithm
comparative analysis, and
classification performance
evaluation | Comparative analysis identifies most effective ML algorithms for smart grid cyberattack classification tasks. | | [337] Hoq Khan, M. A. U.,
Islam, Z., Ahmed, I., Rabbi, M.
M. K., Rahman Anonna, F.,
Zeeshan, F., & Alamin
Sadnan, G. M. (2025). Secure
Energy Transactions Using | 2025 | Develops a hybrid
blockchain-Al system for
secure peer-to-peer energy
transactions with real-time
fraud detection using
machine learning models | Over 1.2 million
anonymized energy
transaction records from
simulated P2P energy
exchange networks
emulating real-life | XGBoost achieved the highest accuracy (35.9%) for fraud detection; blockchain-Al integration provides tamper-resistant transaction logging with | | Blockchain Leveraging AI for | (Random Forest, Logistic | blockchain-based | real-time anomaly | |------------------------------|--------------------------|--------------------------|-------------------| | Fraud Detection and Energy | Regression, XGBoost) | American microgrids (LO3 | detection. | | Market Stability. | integrated with Ethereum | Energy and Grid+ Labs) | | | | smart contracts. | | | | | | | | Table 4. Representative Malware Detection and Classification Studies for Smart Grids Figure 11. Year-wise distribution of malware detection/classification studies # D. PRIVACY-PRESERVING AI The integration of artificial intelligence in the energy sector relies heavily on large-scale data
collection from smart meters, distributed generation units, and demand-response programs. While such data provides valuable insights into grid behavior and consumer patterns, it also poses profound privacy challenges. Detailed energy consumption records, for instance, can reveal household occupancy patterns, appliance usage, and even lifestyle habits, creating risks of misuse or unauthorized surveillance if not adequately protected. Addressing these challenges requires the development and deployment of privacy-preserving Al techniques that enable data-driven innovation while maintaining robust confidentiality safeguards. A key approach in this field is homomorphic encryption, which enables computations to be performed directly on encrypted data without needing decryption. This method allows utilities and grid operators to analyze sensitive energy consumption patterns while ensuring that the raw data remains hidden. For example, encrypted load profiles can be used to train demand-forecasting models without exposing individual household details, providing a secure framework for collaborative analytics across multiple stakeholders. Although promising, homomorphic encryption remains computationally intensive, and ongoing research focuses on optimizing its performance for real-time energy applications. Differential privacy is another critical technique, designed to inject statistical noise into datasets or query responses to obscure individual contributions. When applied to smart meter data or distributed generation records, differential privacy ensures that the inclusion or exclusion of a single household's data does not significantly impact the analysis outcome. This technique is particularly relevant in demand-response programs where aggregated load flexibility insights must be shared without exposing identifiable consumption behaviors. Striking the right balance between data utility and privacy guarantees remains an open research problem, as excessive noise can degrade the predictive accuracy of AI models. In addition, federated learning has emerged as a powerful paradigm for privacy-preserving collaboration. Instead of centralizing raw data, federated learning enables distributed entities, such as residential households, microgrids, or regional utilities, to train shared AI models locally. Only model parameters or updates are exchanged, significantly reducing the risk of data leakage. This decentralized approach is well-suited for energy systems where stakeholders may be reluctant or legally restricted from sharing sensitive consumption data. However, federated learning introduces new vulnerabilities, such as model poisoning and inference attacks, which require complementary security mechanisms, including secure aggregation and anomaly detection. Ongoing research in privacy-preserving AI emphasizes the need to balance privacy with model utility. Energy providers must ensure that data protection measures do not compromise the effectiveness of demand forecasting, grid stability analysis, or distributed energy resource optimization. Multi-layered frameworks that combine homomorphic encryption, differential privacy, and federated learning are gaining traction as robust solutions for safeguarding consumer privacy while enabling collaborative analytics. In the context of increasing regulatory scrutiny and consumer awareness, advancing these privacy-preserving AI methods is critical for ensuring both trust and efficiency in the evolving energy landscape. | Reference and Year | Year | Perform Work | Dataset/Testing
mechanism | Finding and Contribution | |---|------|--|--|---| | [126] Bibi, H., Khan, A. A., Ahmad, J., Iqbal, M. M., & Arshad, H. (2025). A comprehensive survey on privacy-preserving techniques in smart grid systems: Challenges, solutions, and future directions. | 2025 | Comprehensive survey
of privacy-preserving Al
techniques in smart
grids, covering key
challenges and future
research directions | Systematic review of privacy-preserving methods (federated learning, differential privacy, MPC) across diverse smart grid datasets and use cases | Provides an exhaustive taxonomy, compares solution performance, and outlines open challenges for scalable privacy-preserving Al in smart grids. | | [127] Ali, W., Din, I. U., Almogren,
A., & Kim, B. S. (2022). A Novel
Privacy Preserving Scheme for
Smart Grid-Based Home Area
Networks. | 2022 | Proposes a home area
network privacy scheme
leveraging lightweight
cryptographic
techniques | Simulated HAN datasets
and privacy threat
models; performance
measured on latency and
confidentiality metrics | Demonstrates strong
data confidentiality with
minimal communication
overhead, suitable for
resource-constrained
HAN devices. | | [128] Deng, S., Xie, K., Li, K., Zhou, J., & He, D. (2024). Data-driven and privacy-preserving risk assessment method for power grid operators. | 2024 | Introduces a differential privacy–based risk assessment model for operational decision support | Power system
operational logs, attack
simulation datasets, and
DP noise calibration
experiments | Achieves accurate risk estimates while mathematically bounding privacy leakage for sensitive operational data. | | [129] Lin, Y. H., Pan, T. H., Hsieh, M. Y., & Lai, Y. C. (2024). A privacy-preserving distributed energy management framework based on vertical federated learning for smart data cleaning. | 2024 | Vertical federated
learning framework for
collaborative energy
management without
raw data sharing | Multi-owner smart meter
datasets partitioned
vertically; FL training
rounds benchmarked
under privacy constraints. | Maintains model accuracy comparable to centralized training while preserving each utility's data privacy. | | [130] Rajca, M. (2024). Privacy Risks
and Regulatory Challenges in
Smart Grids and Renewable Energy
Systems: A Comprehensive
Analysis. | 2024 | Examines data privacy
risks and regulatory
frameworks affecting
smart grid deployments | Literature and policy
document review across
GDPR, NERC CIPv5, and
national regulations | Identifies governance
gaps, recommends policy
harmonization, and
outlines technical
controls for compliance. | | [131] Zhang, Z., Rath, S., Xu, J., & Xiao, T. (2024). Federated Learning for Smart Grid: A Survey on Applications and Potential Vulnerabilities. | 2024 | Survey of federated
learning applications in
smart grids, plus analysis
of associated privacy
attacks | Review of FL-based load
forecasting, anomaly
detection, and energy
trading use cases; threat
modeling | Catalogs FL applications,
highlights attack vectors
(inference, poisoning),
and proposes mitigation
strategies. | | [132] Hafeez, K., Armghan, A.,
Alenezi, F., Asif, M., Ahmad, J., &
Ahmad, A. (2023). E-DPNCT: an
enhanced attack resilient | 2023 | Differential privacy
model with noise
cancellation to protect
location and energy | Public smart meter
datasets, DP budget
tuning experiments, and
noise cancellation | Achieves improved
utility–privacy trade-off
by canceling redundant
noise, retaining high data | | differential privacy model with
noise cancellation technique for
location and energy data privacy in
smart grid. | | usage data | efficacy tests | accuracy. | |---|------|---|--|--| | [133] Guo, W., Zhang, B., Li, C., &
Wang, X. (2025). Privacy-Preserving
Real-Time Smart Grid Topology
Analysis Using Graph Neural
Networks with Differential Privacy. | 2025 | Graph neural network
framework with DP to
analyze grid topology in
real time without
exposing the structure | Synthetic grid topology
graphs and real
operational data; GNN
accuracy measured under
DP constraints | Enables topology insights with provable DP guarantees, supporting secure real-time grid monitoring. | | [134] Wen, H., Zhang, J., Meng, Q., Chen, R., & Li, J. (2025). A privacy-preserving heterogeneous federated learning framework for electricity theft detection in smart grids. | 2025 | Heterogeneous FL
framework
accommodating diverse
device capabilities for
theft detection | Regional utility datasets,
heterogeneous model
aggregation experiments,
and privacy–utility
metrics | Shows robust theft detection performance and fairness across participants with varying data distributions. | | [135] Singh, P., Nayyar, A., Kaur, A., & Ghosh, U. (2021). Blockchain and homomorphic encryption-based privacy preservation data aggregation model for smart grid. | 2021 | Combines blockchain
logging with HE-based
aggregation for secure
meter data collection | Real-world smart meter logs, HE performance benchmarks,
and blockchain ledger simulations. | Ensures aggregated billing accuracy without revealing individual consumption; provides an immutable audit trail. | | [136] Marandia, A. J., Aranha, D. F.,
de Souza, C. P., & Simplicio, M. A.
(2024). Lattice-Based
Homomorphic Encryption For
Privacy-Preserving Smart Grid Data
Collection and Analysis. | 2024 | Lattice-based HE
scheme for encrypted
smart grid data analytics | Encrypted load profiles,
HE operation
performance tests, and
analytics accuracy
evaluation | Demonstrates practical HE performance for grid analytics with acceptable computational overhead. | | [137] Abreu, Z., Canedo, P., Bianchi, A., Ribeiro, M. V., & Wille, E. C. (2022). Privacy protection in smart meters using homomorphic encryption: A survey. | 2022 | Survey of HE
approaches for secure
meter data aggregation
and analytics | Review of HE libraries,
performance
benchmarks, and
application case studies | Synthesizes HE state of
the art, identifies
performance bottlenecks,
and suggests
optimization directions. | | [138] Xu, W., Zhang, J., Huang, S.,
Luo, C., & Li, W. (2023). A Privacy-
Preserving Framework Using
Homomorphic Encryption for
Smart Metering Systems with Trust
Boundaries. | 2023 | HE framework enforces
trust boundaries
between utilities and
data processors. | Smart meter traces, trust
region definitions, and
HE protocol validation | Validates cross-
organization analytics
while enforcing fine-
grained access control
via HE. | | [139] Yang, Y., Zhang, X., Zhu, Z., &
Lei, J. (2016). Research on
Homomorphic Encryption
Clustering Algorithm for Smart
Grid Privacy Preserving. | 2016 | Clustering algorithm using HE to preserve privacy during data segmentation | Metering datasets,
clustering quality, and HE
performance
comparisons | Maintains clustering accuracy with encrypted data, enabling privacy-aware demand segmentation. | | [140] Thoma, C., Cui, T., &
Franchetti, F. (2012). Secure
Multiparty Computation-Based
Privacy-Preserving Smart Metering
System. | 2012 | MPC protocol for secure joint computation of aggregated meter data | Field trial data, MPC
protocol overhead
benchmarks, and
aggregation accuracy
tests | Achieves collaborative aggregation without data leaks, maintaining meter confidentiality. | | [141] Badra, M., & Borghol, R. (2025). An efficient blockchain-based privacy preservation scheme for smart grids. | 2025 | Blockchain protocol
enforcing differential
privacy controls on grid
data sharing | Blockchain testnet,
privacy parameter
experiments, and data-
sharing performance
metrics | Offers transparent data provenance with DP enforcement, balancing auditability and privacy. | |--|------|---|---|---| | [142] von der Heyden, J., Schlüter,
N., Binfet, P., Asman, M., Zdrallek,
M., Jager, T., & Schulze Darup, M.
(2024). Privacy-Preserving Power
Flow Analysis via Secure Multi-
Party Computation. | 2024 | MPC-based secure
power flow analysis
enabling collaborative
grid studies | Multi-utility operational
data, MPC runtime, and
result accuracy validation | Supports joint grid
analyses without data
exposure, preserving
utility data
confidentiality. | | [143] Mustafa, M. A., Cleemput, S.,
Aly, A., & Abidin, A. (2016). An
MPC-based Protocol for Secure
and Privacy-Preserving Smart
Metering. | 2016 | MPC protocol
integrating meter data
in an encrypted domain
for billing | Meter datasets, MPC
overhead, and
confidentiality
benchmarks | Facilitates secure billing computations with provable privacy guarantees for customer data. | | [144] Khan, A. A., Laghari, A. A.,
Awan, S. A., Jumani, A. K.,
Mahmood, A., Shaikh, A. A., &
Soothar, P. (2023). Artificial
intelligence and blockchain
technology for secure smart grid
and power distribution
automation: A state-of-the-art
review. | 2023 | Survey of Al and
blockchain integration
for privacy and security
in power distribution | Review of blockchain
architectures, Al
applications, and privacy-
preserving schemes | Outlines combined Al-
blockchain benefits,
performance trade-offs,
and research directions. | | [145] Khan, H. M., Jillani, R. M.,
Tahir, M., Chow, C. E., & Non, A. L.
(2021). Fog-enabled secure
multiparty computation-based
aggregation scheme in smart grid. | 2021 | Fog-based MPC scheme
for near-edge privacy-
preserving data
aggregation | Edge device datasets, fog
node performance
testing, and aggregation
accuracy metrics | Reduces communication
latency while preserving
privacy via distributed
MPC at the fog layer. | | [146] Zobiri, F., Bielecki, A., Ernst, D., & Glavic, M. (2024). Residential flexibility characterization and trading using secure multiparty computation. | 2024 | MPC framework for
privacy-preserving
residential demand
flexibility trading | Residential demand
profiles, MPC trading
simulation experiments,
and pricing outcome
validation | Enables trading of flexibility offers without revealing individual consumption patterns. | | [147] Mahmood, A., Khan, S.,
Albeshri, A., Ahmad, J., Saleem, K.,
& Iqbal, W. (2023). An efficient and
privacy-preserving blockchain-
based authentication and key
agreement scheme for smart grids. | 2023 | Blockchain-based
authentication protocol
with built-in privacy
controls | Smart grid node
simulations,
authentication latency,
and privacy parameter
tests | Delivers secure key
agreement and node
authentication without
revealing node identity. | | [148] Rial, A., & Danezis, G. (2011).
Privacy-Preserving Smart Metering. | 2011 | Early foundational
framework for privacy-
preserving metering
using aggregation | Prototype meter
deployments, data
aggregation accuracy,
and privacy leakage
analysis | Introduces aggregation without individual data disclosure, setting the groundwork for subsequent schemes. | | [149] Zhou, L., Wang, L. Y. Y Sun, Y. (2024). Leveraging zero-knowledge proofs for blockchain-based identity sharing: A survey. | 2024 | Survey of ZKP
techniques for identity
and credential privacy in
blockchain-enabled
smart grids | Review of ZKP protocols, implementation case studies, and performance benchmarks | Highlights ZKP's potential for decentralized identity management with strong privacy assurances. | |---|------|--|---|---| | [150] Iqbal, A., Gope, P., & Sikdar,
B. (2024). Privacy-Preserving
Collaborative Split Learning
Framework for Smart Grid Load
Forecasting. | 2024 | Split learning framework
distributing model
training across utilities
without data sharing | Load forecasting datasets
from multiple utilities,
split learning round
performance evaluation. | Retains forecasting accuracy while ensuring raw data never leaves the local utility environment. | | [151] Yang, L., Chen, X., Zhang, J.,
& Poor, H. V. (2014). Privacy-
Preserving Data Sharing in Smart
Grid Systems. | 2014 | Secure data sharing protocols for smart grids using attribute-based encryption and access control | Smart grid pilot data,
encryption scheme
performance, and access
policy enforcement tests | Ensures fine-grained data sharing control supporting multiple stakeholders without data leaks. | | [152] Zhou, X., Feng, J., Wang, J., & Pan, J. (2022). Privacy-preserving household load forecasting based on non-intrusive load monitoring: A federated deep learning approach. | 2022 | Federated DL approach
combining NILM for
private household load
forecasting | Household NILM
datasets, federated
training experiments, and
forecasting accuracy
under privacy constraints | Improves forecasting accuracy while preserving household usage privacy via federated learning. | | [153] Fernández, J. D., Nascimento,
A., Labrador, M. A., & Krishnan, R.
(2022). Privacy-preserving
federated learning for residential
short-term load forecasting. | 2022 | Federated learning
protocol for aggregated
residential load
forecasting with DP
guarantees | Residential load datasets,
FL round convergence
tests, and DP noise
tuning experiments | Demonstrates reliable short-term forecasting with formal privacy guarantees on individual profiles. | | [154] Taïk, A., & Cherkaoui, S. (2020). Electrical load forecasting using edge computing and federated learning. | 2020 | Edge-based federated
learning framework for
real-time load
forecasting with privacy
preservation | Edge device power consumption datasets, federated round latency, and forecasting error metrics | Shows low-latency forecasting at edge nodes, preserving raw data privacy and reducing central load. | | [155] Li, Z., Kang,
J., Yu, R., Ye, D.,
Deng, Q., & Zhang, Y. (2018).
Consortium blockchain for secure
energy trading in the industrial
Internet of Things. | 2018 | Consortium blockchain architecture securing energy trading with privacy controls | loT device transaction
logs, blockchain
performance tests, and
privacy policy
enforcement | Enables secure and private energy trading among consortium members with immutable ledgers. | Table 5. Representative Privacy-Preserving Al Studies in Smart Grids Figure 12. Year-wise distribution of privacy-preserving AI studies #### E. ADVERSARIAL MACHINE LEARNING DEFENSES Adversarial machine learning has emerged as a significant cybersecurity concern in smart grids, where attackers deliberately craft malicious inputs designed to deceive AI models. These adversarial examples, often indistinguishable from legitimate data, pose a severe risk to anomaly detection systems, intrusion detection systems (IDS), and other AI-enabled mechanisms that safeguard grid operations. Unlike traditional cyberattacks that exploit vulnerabilities in protocols or hardware, adversarial attacks directly target the machine learning pipeline, exploiting its sensitivity to small perturbations. This makes AI-based defenses a double-edged sword: while they enhance grid reliability and real-time response, they also introduce new attack surfaces. Research in adversarial defenses for smart grids has focused on robust training strategies. One widely used technique is adversarial training, where models are explicitly trained on perturbed datasets to learn robust decision boundaries. By incorporating adversarial examples during model development, detection systems can better withstand evasion attempts. However, adversarial training alone is computationally expensive and may not generalize well to unseen attack strategies. Consequently, hybrid methods have been proposed, combining robust training with uncertainty quantification, where models assign confidence scores to predictions, enabling operators to flag suspicious low-confidence outputs. Another major defense strategy involves input sanitization, where raw data streams are pre-processed to filter out perturbations before being fed into machine learning models. For instance, statistical smoothing, feature compression, or transformation into alternative feature spaces can mitigate the impact of adversarial noise. Techniques such as wavelet-based filtering and dimensionality reduction have shown promise in reducing vulnerability while maintaining accuracy. At the same time, researchers have emphasized the importance of real-time sanitization, as delays in filtering can diminish the operational value of anomaly detection in high-frequency smart grid environments. Ensemble learning approaches have also been widely explored to counter adversarial threats. By integrating multiple diverse models, such as convolutional neural networks, long short-term memory networks, and tree-based classifiers, systems achieve greater resilience, since adversarial perturbations effective against one model may not transfer effectively across the entire ensemble. Voting-based and weighted-aggregation mechanisms further reduce false negatives, providing a safeguard against sophisticated, adaptive adversarial campaigns. In addition, model diversification can be extended by using heterogeneous feature representations and multimodal data sources, such as combining power consumption, network telemetry, and environmental sensor inputs. Recent advances have examined explainable AI (XAI) as a complementary defense, leveraging interpretability to highlight abnormal decision-making patterns that might signal adversarial manipulation. For example, if feature importance shifts unexpectedly in response to minor input variations, the model's vulnerability can be flagged in real time. Similarly, adversarial detection frameworks have been developed that operate as a meta-layer, monitoring the behavior of core detection models and flagging anomalous decision trajectories. These meta-defences provide an additional layer of reliability by continuously auditing the AI's operational integrity. The field of adversarial machine learning defenses in smart grids is increasingly urgent, as attackers now employ AI to automate and scale their own attack strategies. The dynamic interplay between adversaries and defenders has transformed cybersecurity into an arms race, with smart grid operators compelled to adopt adaptive and proactive defense strategies. Looking ahead, research points toward the integration of adversarial robustness with privacy-preserving AI, federated learning, and secure multiparty computation, ensuring that defenses can be collaboratively improved across distributed environments without exposing sensitive infrastructure data. Ultimately, building resilient Al-based security in smart grids will require a holistic framework that combines robust training, data sanitization, ensemble modeling, and explainability to stay ahead of evolving adversarial threats. | Reference and Year | Year | Perform Work | Dataset/Testing
mechanism | Finding and Contribution | |--|------|---|---|--| | [156] Efatinasab, E., Brighente, A.,
Rampazzo, M., Azadi, N., & Conti,
M. (2025). Fortifying smart grid
stability: Defending against
adversarial attacks using robust
anomaly detection and mitigation
strategies. | 2025 | Develops robust anomaly detection and mitigation strategies to defend smart grid stability against adversarial attacks | Smart grid stability
datasets, adversarial
attack simulations, and
robust detection
algorithm performance
evaluation | Demonstrates significant improvement in grid stability defense through integrated anomaly detection and mitigation approaches. | | [157] Sánchez, G., Araya, L. Y
Parra, L. (2024). Attacking
Learning-based Models in Smart
Grids: Adversarial Examples and
Defense Mechanisms. | 2024 | Analyzes adversarial
attacks on smart grid ML
models and proposes
comprehensive defense
mechanisms | Smart grid ML model
datasets, adversarial
example generation, and
defense mechanism
evaluation benchmarks | Identifies key vulnerabilities in smart grid ML models and provides effective defense strategies against adversarial examples. | | [158] Hao, J., Piechocki, R. J.,
Kaleshi, D., Chin, W. H., & Fan, Z.
(2022). Adversarial attacks on
deep learning models in smart
grids: A survey and defense
mechanisms. | 2022 | Comprehensive survey of
adversarial attacks on
deep learning models in
smart grids with defense
mechanism analysis | Literature review of
adversarial attack
methods, deep learning
model vulnerabilities, and
defense technique
benchmarks | Systematizes adversarial attack landscape and defense mechanisms, identifying research gaps and future directions. | | [159] Efatinasab, E., Brighente, A.,
Rampazzo, M., Azadi, N., & Conti,
M. (2024). A Novel Generative
Attack on Smart Grid Stability
Prediction Using Adversarial
Training. | 2024 | Proposes novel generative
adversarial attack
methods and
corresponding adversarial
training defenses | Grid stability prediction
datasets, generative
adversarial networks, and
adversarial training
validation experiments | Shows adversarial training significantly improves model robustness against sophisticated generative attacks on stability prediction. | | [160] Zhang, Z. (2024). Reinforcement Learning-Based Approaches for Enhancing Security and Resilience in Smart Control: A Survey on Attack and Defense Methods. | 2024 | Survey of reinforcement
learning approaches for
smart grid security
enhancement and
adversarial defense | RL-based security
applications review, attack
scenario modeling, and
defense strategy
performance analysis | Identifies RL as a promising approach for adaptive adversarial defense and provides a framework for security applications. | | [161] Omara, A., Guidi, B., & Ricci,
L. (2024). An Al-driven solution to
prevent adversarial attacks on
V2M services in smart grids. | 2024 | Al-driven defense solution
specifically designed for
vehicle-to-microgrid
(V2M) services against
adversarial attacks | V2M communication
datasets, adversarial
attack scenarios, and Al
defense mechanism
performance evaluation | Demonstrates an AI defense solution that effectively prevents adversarial attacks while maintaining V2M service quality. | | [162] Jeje, M. O. (2025).
Cybersecurity Assessment of
Smart Grid Exposure Using a
Machine Learning Based
Approach with Adversarial | 2025 | Cybersecurity assessment
framework incorporating
adversarial robustness for
comprehensive smart grid
vulnerability analysis | Smart grid vulnerability datasets, adversarial robustness metrics, and cybersecurity assessment validation experiments | Provides a comprehensive cybersecurity assessment framework that accounts for adversarial threats and robustness requirements. | | Robustness. | | | | | |--|------
--|---|--| | [163] Okokpujie, K. O., Okonkwo,
U. C., Okokpujie, I. P., & John, S.
N. (2025). Al-augmented
cybersecurity for smart grids in
the United States: Adversarial
defense mechanisms. | 2025 | Al-augmented
cybersecurity framework
with a specific focus on
adversarial defense
mechanisms for U.S. smart
grids | U.S. smart grid
infrastructure data, Al
cybersecurity
applications, and
adversarial defense
performance benchmarks | Shows Al-augmented defenses significantly improve cybersecurity posture against sophisticated adversarial attacks. | | [164] Verma, S., & Raj, A. (2025). A short report on deep learning synergy for decentralized smart grid cybersecurity: Adversarial robustness approaches. | 2025 | Explores deep learning
synergy for decentralized
smart grid cybersecurity
with emphasis on
adversarial robustness | Decentralized smart grid
architectures, deep
learning model
deployment, and
adversarial robustness
evaluation | Demonstrates deep learning approaches enhance decentralized grid security while maintaining adversarial robustness. | | [165] Berghout, T., Benbouzid, M.,
Amirat, Y., Mouss, L. H., &
Saidane, A. (2022). Machine
learning for cybersecurity in smart
grids: A comprehensive survey on
adversarial attacks and defenses. | 2022 | Comprehensive survey examining ML cybersecurity applications in smart grids with a focus on adversarial attacks and defenses | ML cybersecurity
literature review,
adversarial attack
taxonomies, and defense
mechanism comparative
analysis | Provides systematic categorization of adversarial threats and defense mechanisms with performance trade-off analysis. | | [166] Shabbir, A., Shafique, T., & Dagiuklas, T. (2025). Smart grid security through fusion-enhanced federated learning: Defense against data poisoning attacks. | 2025 | Fusion-enhanced federated learning approach for smart grid security with specific defense against data poisoning | Federated learning
datasets, data poisoning
attack simulations, and
fusion-based defense
mechanism evaluation | Shows fusion-enhanced FL provides robust defense against data poisoning while maintaining collaborative learning benefits. | | [167] Efatinasab, E., Brighente, A.,
Rampazzo, M., Azadi, N., & Conti,
M. (2025). Towards Robust
Stability Prediction in Smart Grids:
Adversarial Training and Defense
Mechanisms. | 2025 | Develops adversarial
training frameworks and
defense mechanisms for
robust smart grid stability
prediction | Grid stability datasets,
adversarial training
protocols, and robustness
evaluation metrics | Achieves significant improvement in stability prediction robustness through systematic adversarial training approaches. | | [168] Tian, J., Wang, B., Li, J.,
Wang, Z., & Ozay, M. (2022).
Adversarial Attacks and Defense
Methods for Power Quality
Recognition in Smart Grids. | 2022 | Examines adversarial
attacks on power quality
recognition systems and
develops corresponding
defense methods | Power quality measurement datasets, adversarial attack generation, and defense method performance evaluation | Identifies vulnerabilities in power quality recognition and provides effective defense methods against adversarial manipulation. | | [169] Nelson, D., Hallberg, J., &
Kuzminykh, I. (2024). Realistic
Adversarial Attacks on Smart Grid
Intrusion Detection Systems and
Defense Mechanisms. | 2024 | Develops realistic
adversarial attacks on
smart grid IDS and
corresponding practical
defense mechanisms | Smart grid IDS datasets,
realistic attack scenario
modeling, and defense
mechanism effectiveness
testing | Demonstrates that realistic adversarial attacks can evade existing IDS and provides practical defense solutions. | | [170] Madhavarapu, V. P. K.,
Bhattacharjee, S., & Islam, M. J.
(2022). A Generative Model for
Evasion Attacks in Smart Grid:
Defense Strategies. | 2022 | Proposes generative
models for evasion attacks
and develops
corresponding defense
strategies for smart grids | Smart grid operational
datasets, generative
attack model training,
and defense strategy
validation experiments | Shows generative models can create sophisticated evasion attacks and provides effective defense strategies. | | [171] Afrin, A., & Ardakanian, O. (2023). Adversarial Attacks on Machine Learning-Based State Estimation in Power Distribution Systems: Defense through Adversarial Training. | 2023 | Analyzes adversarial
attacks on ML-based state
estimation and develops
adversarial training
defenses | Power distribution system datasets, state estimation models, and adversarial training effectiveness evaluation | Demonstrates that
adversarial training
significantly improves the
robustness of state
estimation against
adversarial manipulation. | |---|------|--|---|---| | [172] Khaw, Y. M., Jahromi, A. A.,
Fahim, S. R., & Hossain, E. (2024).
Evasive attacks against
autoencoder-based cyberattack
detection systems in smart grids:
Defense mechanisms. | 2024 | Studies evasive attacks against autoencoder-based detection systems and proposes defense mechanisms. | Autoencoder-based detection datasets, evasive attack scenarios, and defense mechanism performance benchmarks | Identifies autoencoder vulnerabilities to evasive attacks and provides robust defense mechanisms. | | [173] Gafur, J., Ahmed, S., &
Rahman, M. A. (2024). Adversarial
Robustness and Explainability of
Machine Learning Models in
Smart Grid Cybersecurity. | 2024 | Examines adversarial robustness and explainability requirements for ML models in smart grid cybersecurity | Smart grid cybersecurity
datasets, adversarial
robustness metrics, and
explainability evaluation
frameworks | Provides a comprehensive framework balancing adversarial robustness with model explainability requirements. | | [174] Agarwal, A., Kumar, S., & Singh, S. K. (2022). Employing adversarial robustness techniques for large-scale stochastic optimal power flow problems. | 2022 | Applies adversarial robustness techniques to large-scale stochastic optimal power flow optimization problems | Large-scale power system datasets, stochastic optimization scenarios, and adversarial robustness validation | Shows adversarial robustness techniques improve the reliability and security of large-scale power flow optimization. | | [175] Hao, J., Kaleshi, D., &
Piechocki, R. J. (2014). Adaptive
Defending Strategy for Smart
Grid Attacks: A Game-Theoretic
Approach. | 2014 | Proposes adaptive
defense strategies using
game-theoretic
approaches for smart grid
attack mitigation | Smart grid attack
scenarios, game-theoretic
modeling, and adaptive
defense strategy
performance evaluation | Demonstrates that game-
theoretic adaptive
defenses provide superior
performance against
evolving attack strategies. | | [176] Kim, J., & Park, S. (2024).
Random Gradient Masking as a
Defensive Measure to Deep
Leakage in Federated Learning for
Smart Grids. | 2024 | Proposes random gradient
masking techniques to
defend against deep
leakage attacks in
federated learning | Federated learning
datasets, gradient leakage
attack simulations, and
defensive masking
technique evaluation | Shows random gradient masking effectively prevents deep leakage while maintaining federated learning performance. | | [177] Zhang, J., Nikolić, K., Carlini,
N., & Tramèr, F. (2024). Gradient
Masking All-at-Once: Ensemble
Everything Everywhere Is Not
Robust in Smart Grid
Applications. | 2024 | Analyzes limitations of
ensemble gradient
masking approaches for
adversarial robustness in
smart grid applications | Smart grid ensemble
model datasets, gradient
masking evaluation, and
robustness assessment
experiments | Demonstrates that ensemble gradient masking approaches have significant limitations and proposes alternative solutions. | | [178] Prasad, K. S., Aithal, G., Bhat, S. S., & Shetty, P. (2025). A two-tier optimization strategy for feature selection in adversarial attack mitigation for IoT networks in smart grids. | 2025 | Develops a two-tier optimization strategy for feature selection to mitigate adversarial attacks on smart grid IoT networks | Smart grid IoT network
datasets, two-tier
optimization algorithms,
and adversarial attack
mitigation evaluation | Shows that two-tier feature selection significantly improves adversarial attack mitigation in IoT-enabled smart grids. | | [179] Irmak, A., Karabacak, K., &
Aydeger, A. (2020). Adversarial | 2020 | Proposes adversarial training methods to | Power system communication datasets, | Demonstrates that adversarial training | | Training of Power Systems
Against Denial-of-Service Attacks:
Defense Mechanisms. | | defend power systems
against
denial-of-service
attacks | DoS attack simulations,
and adversarial training
effectiveness evaluation | provides robust defense against sophisticated denial-of-service attacks. | |---|------|--|--|--| | [180] Moradi, M., Weng, Y., & Lai,
Y. C. (2022). Defending Smart
Electrical Power Grids against
Cyberattacks with Deep
Reinforcement Learning. | 2022 | Develops deep
reinforcement learning
approaches for defending
smart grids against
various cyberattack types | Smart grid cyberattack
datasets, deep RL training
environments, and
defense performance
evaluation metrics | Shows deep RL approaches provide adaptive and effective defense against diverse cyberattack strategies. | | [181] Singla, S., Feizi, S., &
Kaulgud, V. (2020). Second-Order
Provable Defenses against
Adversarial Attacks in Smart Grid
Machine Learning Applications. | 2020 | Develops second-order provable defense mechanisms with mathematical guarantees against adversarial attacks | Smart grid ML application
datasets, second-order
optimization methods,
and provable defense
validation | Provides mathematically provable defense guarantees against adversarial attacks in smart grid ML applications. | | [182] Bhattacharjee, S., Islam, M. J., & Abedzadeh, S. (2022). Robust Anomaly-based Attack Detection in Smart Grids under Data Poisoning Attacks. | 2022 | Develops robust anomaly detection methods that maintain effectiveness under data poisoning attacks | Smart grid anomaly
detection datasets, data
poisoning attack
simulations, and robust
detection evaluation | Shows robust anomaly detection methods maintain high performance even under sophisticated data poisoning attacks. | | [183] Tian, J., Wang, B., Li, J.,
Wang, Z., & Ozay, M. (2022).
Adversarial attack and defense
methods for neural network-
based state estimation in smart
grids. | 2022 | Comprehensive analysis of
adversarial attacks and
defense methods for
neural network-based
state estimation | Smart grid state
estimation datasets,
neural network model
training, and adversarial
defense validation | Provides a comprehensive framework for securing neural network-based state estimation against adversarial attacks. | | [184] Chen, L., Wang, S., Liu, Y., & Zhang, K. (2025). How different architectures stand up to adversarial attacks in smart grid applications. | 2025 | Comparative analysis of how different neural network architectures handle adversarial attacks in smart grid contexts | Multi-architecture neural
network datasets,
adversarial attack
scenarios, and robustness
comparison analysis | Identifies the most robust
neural network
architectures for smart
grid applications under
adversarial conditions. | | [185] Kraidia, I., Bourahla, M., & Ramdane-Cherif, A. (2024). Defense against adversarial attacks: robust and efficient compressed models for smart grid applications. | 2024 | Develops robust and
efficient compressed
models that maintain
adversarial robustness for
smart grid deployment | Compressed model datasets, adversarial robustness evaluation, and efficiency-robustness trade-off analysis | Achieves optimal balance
between model
compression efficiency
and adversarial robustness
for practical deployment. | Table 6. Representative Adversarial Machine Learning Defense Studies in Smart Grids Figure 13. Year-wise distribution of adversarial ML defense studies #### F. SECURE DATA FUSION AND AGGREGATION The modern smart grid ecosystem generates massive amounts of data from diverse and distributed sources, including smart meters, phasor measurement units (PMUs), supervisory control and data acquisition (SCADA) systems, Internet of Things (IoT) sensors, and distributed energy resources such as solar panels and wind turbines. While the integration of these heterogeneous data streams provides unparalleled opportunities for real-time situational awareness, operational efficiency, and predictive maintenance, it also raises significant challenges related to data integrity, authenticity, and trust. Secure data fusion and aggregation frameworks are therefore critical for ensuring that decisions derived from multi-source data are both reliable and resilient against cyber threats. Al-driven secure data fusion mechanisms have emerged as a powerful solution to address these challenges. By leveraging advanced machine learning models, it is possible to combine data streams of varying fidelity, granularity, and modality into unified, high-quality representations. For example, anomaly detection models trained on fused data from both PMUs and IoT devices can detect subtle inconsistencies that may be overlooked when analyzing data sources independently. Such integration enhances the robustness of intrusion detection systems and supports dynamic load balancing, fault localization, and demand response optimization. However, the inherent sensitivity of energy data necessitates a strong focus on security guarantees during the fusion process. Recent research emphasizes the use of blockchain-Al hybrids to strengthen trust in secure data aggregation. Blockchain provides immutable, tamper-resistant logs of data provenance, ensuring that inputs to Al models can be traced back to verified origins. When coupled with Al algorithms for data aggregation and anomaly detection, this hybrid approach creates a layered defense: blockchain ensures integrity and accountability, while Al provides adaptive, scalable, and intelligent processing. This dual strategy is particularly promising for distributed generation systems, where multiple stakeholders, such as prosumers, utilities, and aggregators, must collaborate without fully trusting one another. Secure multiparty computation (SMPC) and homomorphic encryption have also been investigated as complementary technologies in this domain. These cryptographic techniques enable data aggregation across different parties without exposing raw data, ensuring privacy-preserving collaboration. For instance, multiple microgrids can share encrypted operational data to a central Al model, which then performs predictive analytics without ever accessing the original plaintext data. This preserves confidentiality while still enabling collective intelligence across distributed networks. From a resilience perspective, the integration of redundancy-aware fusion algorithms has shown promise. By weighting data streams based on trust scores or reliability metrics, Al systems can mitigate the impact of compromised or corrupted sources. This adaptive weighting mechanism ensures that decision-making remains accurate even in the presence of adversarial data injections or faulty devices. Furthermore, techniques such as federated learning have been extended to secure data fusion tasks, where local models trained on heterogeneous data contribute to a global aggregation without centralizing sensitive raw data. Despite these advances, open research challenges remain. One key challenge lies in balancing the computational overhead of blockchain and cryptographic protocols with the real-time constraints of smart grid operations. Additionally, as adversaries increasingly exploit Al itself, ensuring that fusion algorithms are resistant to adversarial manipulation becomes critical. Another challenge is scalability: as the volume of IoT devices in the grid grows, secure data fusion systems must evolve to handle millions of concurrent streams without performance degradation. Secure data fusion and aggregation represent a cornerstone of trustworthy AI for the smart grid. By combining blockchain-based provenance guarantees, cryptographic privacy-preserving methods, and AI-driven fusion algorithms, researchers are building frameworks that not only ensure integrity and authenticity but also unlock the full potential of heterogeneous data integration. The future of smart grid security will likely depend on how effectively these interdisciplinary approaches are harmonized to support both operational efficiency and cyber resilience. | Reference and Year | Year | Perform Work | Dataset/Testing
mechanism | Finding and Contribution | |--|------|--|---|---| | [186] Xiao, J., Wu, C., Zhang, Y.,
Li, Q., & Wang, H. (2024). Multi-
source data security protection
of smart grid based on edge
computing and blockchain
technology. | 2024 | Develops a multi-source
data security protection
framework combining
edge computing and
blockchain for smart grid
data fusion | Multi-source smart grid
datasets, edge
computing testbeds, and
blockchain security
validation experiments | Demonstrates enhanced data security through an integrated edge-blockchain approach, improving fusion efficiency and privacy protection. | | [187] Adewole, K. S., & Jacobsson, A.
(2024). A Privacy and Security-Aware Model for IoT Data Fusion in Smart Connected Homes. | 2024 | Privacy-aware IoT data
fusion model specifically
designed for smart home
energy management
systems | Smart home IoT datasets,
privacy threat modeling,
and security-aware fusion
algorithm evaluation | Achieves secure IoT data fusion while maintaining privacy guarantees and operational efficiency in connected homes. | | [188] Deng, S., Xie, K., Li, K.,
Zhou, J., & He, D. (2024). Data-
driven and privacy-preserving
risk assessment method for
power grid operators. | 2024 | Data-driven risk
assessment framework
with privacy preservation
for power grid operational
decision making | Power grid operational
datasets, risk assessment
scenarios, and privacy-
preserving analytics
validation | Provides accurate risk assessment while maintaining strict privacy guarantees for sensitive operational data. | | [189] Tian, L., Zhang, H., Wang,
Y., & Liu, C. (2024). Privacy
Preserving Data Fusion: A
Comprehensive Framework for
Smart Grid Applications. | 2024 | Comprehensive privacy-
preserving data fusion
framework tailored for
diverse smart grid
applications | Multi-application smart
grid datasets, privacy
metrics evaluation, and
comprehensive fusion
framework testing | Establishes a unified framework for privacy-preserving data fusion across various smart grid use cases. | | [190] Ali, W., Din, I. U.,
Almogren, A., & Kim, B. S.
(2022). A Novel Privacy
Preserving Scheme for Smart
Grid-Based Home Area
Networks. | 2022 | Privacy-preserving scheme
for secure data
aggregation and fusion in
smart grid home area
networks | Home area network
datasets, privacy attack
scenarios, and
aggregation scheme
performance evaluation | Demonstrates effective privacy protection for home energy data while enabling necessary grid operations. | | [191] Dai, X., Li, J., Wang, Y., & Chen, R. (2024). Privacy-preserving distributed state estimation in smart grid using sensor data fusion and differential privacy. | 2024 | Distributed state estimation framework using secure sensor data fusion with differential privacy guarantees | Multi-sensor smart grid
datasets, distributed
estimation algorithms,
and differential privacy
validation | Achieves accurate distributed state estimation while providing formal privacy guarantees through differential privacy. | | [192] Guo, W., Zhang, B., Li, C., & Wang, X. (2025). Privacy-Preserving Real-Time Smart Grid Topology Analysis Using Graph Neural Networks | 2025 | Real-time topology
analysis using GNN-based
secure data fusion with
differential privacy
protection | Smart grid topology
datasets, graph neural
network training, and
differential privacy
parameter tuning | Enables real-time topology
analysis while maintaining
privacy through differential
privacy-enhanced GNN
fusion. | | with Differential Privacy. | | | | | |---|------|--|---|--| | [193] Zhang, S., Huang, Y. Y., Ma,
L. (2024). A Secure Data
Aggregation Scheme to
Traceback Malicious Smart
Meters in Vehicle-to-Grid
Networks. | 2024 | Secure aggregation
scheme with malicious
node detection capability
for vehicle-to-grid data
fusion | Vehicle-to-grid
communication datasets,
malicious node
simulation, and traceback
algorithm validation | Provides secure V2G data aggregation while enabling identification and tracing of compromised smart meters. | | [194] Tonyali, S., Akkaya, K.,
Saputro, N., & Uluagac, A. S.
(2017). A reliable data
aggregation mechanism with
Homomorphic Encryption in
Smart Grid AMI Networks. | 2017 | Homomorphic encryption-
based reliable data
aggregation mechanism
for Advanced Metering
Infrastructure | AMI network datasets,
homomorphic encryption
performance
benchmarks, and
reliability testing
scenarios | Demonstrates reliable and private data aggregation using homomorphic encryption with acceptable computational overhead. | | [195] Chen, Y., Martínez-Ortega,
J. F., Castillejo, P., & López, L.
(2019). A Homomorphic-Based
Multiple Data Aggregation
Scheme for Smart Grid. | 2019 | Multiple data aggregation
schemes using
homomorphic encryption
for diverse smart grid data
types | Multi-type smart grid
datasets, homomorphic
encryption algorithms,
and aggregation scheme
evaluation | Enables secure aggregation of multiple data types while preserving computational privacy through homomorphic encryption. | | [196] Kang, W., Lee, S., Kim, J., & Park, D. (2024). A secure and efficient data aggregation scheme for cloud-assisted smart grids. | 2024 | Secure and efficient data aggregation framework designed for cloudassisted smart grid architectures | Cloud-based smart grid
datasets, security
analysis, and efficiency
benchmarking
experiments | Balances security and efficiency in cloud-assisted aggregation, enabling scalable smart grid data processing. | | [197] Zhang, X., Wang, L., Chen,
Y., & Liu, H. (2024). Fine-grained
encrypted data aggregation
mechanism with fault tolerance
in edge-assisted smart grids. | 2024 | Fine-grained encrypted aggregation with fault tolerance capabilities for edge-assisted smart grid systems | Edge computing datasets, fault injection scenarios, and encrypted aggregation performance evaluation | Provides fault-tolerant, encrypted aggregation enabling robust data fusion under node failures and attacks. | | [198] Croce, D., Giuliano, F.,
Tinnirello, I., Garbo, G., &
Mangione, S. (2020). Privacy-
Preserving Overgrid: Secure
Data Collection for the Smart
Grid. | 2020 | Privacy-preserving secure
data collection and
aggregation framework for
large-scale smart grid
deployments | Large-scale smart grid
datasets, privacy metrics
evaluation, and secure
collection protocol
validation | Enables privacy-preserving data collection at scale while maintaining operational utility for grid management. | | [199] Yan, R., Li, Y., Zhang, H., & Wang, Q. (2024). Multi-Smart
Meter Data Encryption Scheme
Based on Differential Privacy. | 2024 | Multi-smart meter data
encryption and
aggregation scheme
incorporating differential
privacy mechanisms | Multi-meter datasets,
differential privacy
parameter optimization,
and encryption scheme
performance analysis | Combines encryption with differential privacy to provide multi-layered protection for smart meter data fusion. | | [200] Mahmood, A., Khan, S.,
Albeshri, A., Ahmad, J., Saleem,
K., & Iqbal, W. (2023). An
efficient and privacy-preserving
blockchain-based secure data
aggregation in smart grids. | 2023 | Blockchain-based secure
data aggregation
framework with privacy
preservation for smart grid
applications | Blockchain testnet
datasets, smart contract
evaluation, and privacy-
preserving aggregation
performance metrics | Demonstrates blockchain-
enabled secure
aggregation with strong
privacy guarantees and
operational efficiency. | | [201] Kabir, F., Megías, D., &
Cabaj, K. (2025). RIOT-based | 2025 | RIOT OS-based smart
metering system with | RIOT OS testbed,
watermarking algorithm | Integrates watermarking with encryption to provide | | smart metering system for privacy-preserving data aggregation using watermarking and encryption. | | watermarking and
encryption for privacy-
preserving aggregation | validation, and
encryption performance
benchmarks | authentication and privacy in resource-constrained environments. | |---|------|--|---|---| | [202] Baksh, R., Ahmad, T., &
Hassan, M. (2024). A
comprehensive and secure
scheme for privacy-preserving
data aggregation in smart grids. | 2024 | Comprehensive security framework for privacy-preserving data aggregation across smart grid infrastructure | Comprehensive smart grid datasets, security threat analysis, and privacy-preserving aggregation evaluation | Provides a holistic security approach combining multiple privacy-preserving techniques for robust data aggregation. | | [203] Khan, H. M., Jillani, R. M.,
Tahir, M., Chow, C. E., & Non, A.
L. (2021). Fog-enabled secure
multiparty computation-based
aggregation scheme in smart
grid. | 2021 | Fog computing-enabled secure multiparty computation framework for smart grid data aggregation. | Fog computing testbeds,
multiparty computation
protocols, and latency-
security trade-off analysis | Reduces aggregation latency while maintaining privacy through fogenabled distributed secure computation. | | [204] Kabir, F., Megías, D., Parra,
L., Lloret, J., & Kabir, S. (2024).
Privacy-preserving data
aggregation protocol for
smart
grid using reversible
watermarking and
homomorphic encryption. | 2024 | Aggregation protocol combining reversible watermarking with homomorphic encryption for enhanced security | Watermarking datasets,
homomorphic encryption
benchmarks, and
protocol security analysis | Combines authentication through watermarking with computational privacy via homomorphic encryption. | | [205] Daş, R., Türkoğlu, M., & Çelik, E. (2025). Multi-sensor data fusion perspective for smart grid analytics. | 2025 | Multi-sensor data fusion
framework specifically
designed for
comprehensive smart grid
analytics applications | Multi-sensor smart grid
datasets, fusion algorithm
benchmarks, and
analytics performance
evaluation | Demonstrates improved analytics accuracy through systematic multi-sensor data fusion approaches. | | [206] Yao, S., Chen, J., Liu, K., &
Zhang, D. (2022). A Secure Data
Aggregation Scheme Enabling
Abnormal Node Detection in
Smart Grid. | 2022 | Secure aggregation
scheme with integrated
abnormal node detection
capabilities for smart grid
networks | Smart grid network
datasets, abnormal
behavior simulation, and
detection algorithm
validation | Enables secure aggregation while identifying and isolating abnormal nodes that may compromise data integrity. | | [207] Tan, S., De, D., Song, W., & Das, S. K. (2017). Survey of Security Advances in Smart Grid: A Data-Driven Approach. | 2017 | Comprehensive survey of security advances in smart grids with a focus on datadriven approaches and fusion | Literature survey of smart
grid security methods,
data-driven techniques,
and comparative analysis | Systematizes security advances and identifies research gaps in datadriven smart grid security approaches. | | [208] Wang, Z., Li, H., Chen, X., &
Liu, Y. (2023). A
Multidimensional Data
Aggregation Scheme Based on
Edge Federated Learning and
Blockchain for Smart Grid. | 2023 | Multidimensional aggregation combining edge federated learning with blockchain for enhanced security | Edge federated learning datasets, blockchain integration experiments, and multidimensional aggregation evaluation | Integrates federated
learning with blockchain to
provide secure, privacy-
preserving
multidimensional
aggregation. | | [209] Hafeez, K., Rehmani, M. H.,
Mishra, S., & O'Shea, D. (2025).
Practical Implications of
Implementing Local Differential | 2025 | Analysis of practical implementation challenges and solutions for local differential privacy in smart | Real-world smart grid
datasets, differential
privacy implementation
experiments, and | Identifies practical challenges and provides implementation guidelines for differential privacy in | | Privacy for Smart Grids. | | grid data fusion | practical deployment analysis | smart grid systems. | |--|------|---|---|--| | [210] Ravi, N., Scaglione, A.,
Peisert, S., & Pradhan, P. (2024).
Preserving Smart Grid Integrity:
A Differential Privacy Framework
for Secure Detection of False
Data Injection Attacks. | 2024 | Differential privacy
framework for maintaining
grid integrity while
enabling secure attack
detection through data
fusion | Attack detection datasets,
differential privacy
parameter tuning, and
integrity preservation
validation | Maintains grid operational integrity while providing privacy-preserving attack detection capabilities. | | [211] Tian, H., Zheng, N., & Jian,
Y. (2023). Advanced Metering
Infrastructure Data Aggregation
Scheme Based on Blockchain. | 2023 | Blockchain-based data
aggregation scheme
specifically designed for
Advanced Metering
Infrastructure systems | AMI blockchain testbed,
smart contract
implementation, and
aggregation performance
benchmarking | Provides decentralized,
tamper-resistant data
aggregation for AMI
systems using blockchain
technology. | | [212] Li, Y., Zhang, K., & Wang,
H. (2023). Localized Differential
Privacy-based Data Privacy
Protection Scheme for Home
Smart Meters. | 2023 | Localized differential privacy approach for protecting privacy in home smart meter data aggregation | Home smart meter
datasets, localized
differential privacy
algorithms, and privacy-
utility trade-off analysis | Achieves strong local privacy protection for home energy data while maintaining utility for grid operations. | | [213] Chen, S., Yang, L., Zhao, C.,
Varadarajan, V., & Wang, K.
(2022). Double-blockchain
Assisted Secure and Anonymous
Data Aggregation for Fog-
enabled Smart Grid. | 2022 | Double-blockchain
architecture for secure and
anonymous data
aggregation in fog-
enabled smart grid
systems | Fog computing datasets,
double-blockchain
implementation, and
anonymous aggregation
validation | Provides enhanced security and anonymity through dual blockchain architecture in fog-enabled environments. | | [214] Pei, T., Li, X., Zhang, Y., & Wang, L. (2024). Blockchain-based anonymous authentication and data aggregation scheme for smart grid with privacy preservation. | 2024 | Blockchain-enabled
anonymous authentication
combined with privacy-
preserving data
aggregation for smart
grids | Authentication datasets,
blockchain privacy
mechanisms, and
aggregation scheme
security evaluation | Enables anonymous authentication while maintaining privacy in data aggregation through blockchain integration. | | [215] Singh, P., Nayyar, A., Kaur,
A., & Ghosh, U. (2021).
Blockchain and homomorphic
encryption-based privacy
preservation data aggregation
model for smart grid. | 2021 | Integrated blockchain and
homomorphic encryption
approach for privacy-
preserving smart grid data
aggregation | Smart grid aggregation
datasets, blockchain-HE
integration testing, and
privacy preservation
validation | Combines blockchain immutability with homomorphic encryption privacy to provide comprehensive data protection. | Table 7. Representative Secure Data Fusion and Aggregation Studies for Smart Grids Figure 14. Year-wise distribution of secure data fusion/aggregation studies ### G. FALSE DATA INJECTION ATTACK (FDIA) DETECTION False Data Injection Attacks (FDIAs) are among the most pervasive and dangerous cyber threats targeting smart grids. By maliciously altering measurement data from smart meters, sensors, or phasor measurement units (PMUs), attackers can mislead state estimators, compromise situational awareness, and manipulate market operations without triggering traditional anomaly detection systems. Unlike random noise or accidental errors, FDIA is adversarial by design, exploiting system vulnerabilities to bypass conventional Bad Data Detection (BDD) mechanisms. The sophistication of these attacks has made them a central research focus in smart grid cybersecurity. Al-driven approaches have significantly advanced the detection of FDIAs. Sparse coding and compressed sensing techniques exploit the low-dimensional structures of measurement data to identify deviations caused by malicious injections, offering effective detection without requiring exhaustive labeled datasets. Bayesian network models provide probabilistic reasoning capabilities, allowing systems to incorporate prior knowledge and dynamically adapt to uncertainties in power system operations. These approaches are particularly useful in scenarios where stealth attacks attempt to blend malicious signals with legitimate fluctuations. Deep learning has emerged as a dominant paradigm for FDIA detection due to its ability to capture complex nonlinear dependencies across high-dimensional grid data. Convolutional Neural Networks (CNNs) have been employed to detect spatial anomalies in grid topologies, while Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) architectures excel at temporal correlation analysis, identifying subtle manipulations across time series data streams. Hybrid architectures combining CNNs and LSTMs further enhance detection accuracy by integrating spatial-temporal feature learning, making them highly effective in dynamic operational environments. Reinforcement learning (RL) represents another frontier in FDIA defense. RL agents can be trained to proactively adapt to evolving adversarial strategies by learning policies that anticipate and mitigate injection attempts. Unlike static detection methods, RL-based frameworks incorporate continuous feedback, enabling systems to optimize detection thresholds and countermeasures in real-time. This adaptability is critical in large-scale distributed grids where attackers may alter their strategies dynamically to evade detection. Recent studies have also investigated graph-based machine learning for FDIA detection, leveraging the natural graph structure of power grids. Graph Convolutional Networks (GCNs) and Graph Neural Networks (GNNs) provide a mechanism for incorporating topological information into detection algorithms, which enhances resilience against coordinated, multi-node injection attacks. Additionally, explainable AI (XAI) techniques are being integrated to improve operator trust and interpretability, ensuring that AI models provide transparent justifications for FDIA alerts, an essential requirement in mission-critical power system operations. The trend
toward integrating privacy-preserving mechanisms into FDIA detection models is also gaining traction. Federated learning approaches allow multiple utilities or microgrids to collaboratively train robust detection models without exposing sensitive operational data. Similarly, differential privacy techniques protect individual measurements while maintaining overall detection performance. Such privacy-preserving FDIA detection frameworks balance data confidentiality with cybersecurity resilience. Despite these advances, challenges remain. Adversaries continue to devise more sophisticated stealth strategies that mimic normal operational patterns, pushing Al detection systems toward higher levels of robustness and generalization. Scalability to ultra-large grids, the computational cost of deep learning models, and the risk of adversarial machine learning attacks targeting FDIA detectors themselves are open areas of concern. Addressing these challenges requires integrating Al models with secure system design principles, blockchain-based data provenance, and cross-layer security strategies that combine communication, control, and data analytics defenses. FDIA detection has evolved into a multi-faceted research area that blends statistical methods, deep learning, reinforcement learning, graph-based approaches, and privacy-preserving Al. Future directions point toward more explainable, adaptive, and scalable detection systems capable of securing the increasingly complex and interconnected smart grid ecosystem against ever-evolving adversarial threats. | Reference and Year | Year | Perform Work | Dataset/Testing
mechanism | Finding and Contribution | |---|------|--|--|---| | [216] Almasabi, S., Alshareef, S., & Grigsby,
L. L. (2021). A Novel Technique to Detect
False Data Injection Attacks on Phasor
Measurement Units. Sensors, 21(17), 5659. | 2021 | Proposed statistical
anomaly detection for
PMU-based FDIA | Simulated PMU
streams on IEEE test
systems | Achieved high detection accuracy on phasor measurement anomalies. | | [217] Alrslani, F. A. F., Alshammari, A., & Alshareef, A. (2025). Enhancing cybersecurity via attribute reduction with a deep learning-based false data injection attack recognition technique. Scientific Reports, 15, 2022. | 2025 | Deep learning classifier
with feature reduction for
FDIA | AMI and PMU
telemetry
simulations | Reduced input dimensions while maintaining >95% detection rate. | | [218] Alshareef, S. M. (2024). Random subspace ensemble-based detection of false data injection attacks in automatic generation control systems. Heliyon, 10(20), e38881. | 2024 | Ensemble random
subspace method for
AGC FDIA detection | IEEE 39-bus AGC
simulation data | Ensemble improved recall and reduced false positives over single models. | | [219] Aoufi, S., Derhab, A., & Guerroumi, M. (2020). Survey of false data injection in smart power grid: Attacks, countermeasures, and challenges. Journal of Information Security and Applications, 54, 102536. | 2020 | Comprehensive survey of FDIA threat models and defenses | Review of PMU/AMI
case studies and
simulations | Identified gaps in real-
world datasets and
recommended a
hybrid evaluation. | | [220] Ashrafuzzaman, M., Das, S., Anik, M. A. H., Mohsenian-Rad, H., & Chakhchoukh, Y. (2020). Detecting stealthy false data injection attacks in the smart grid using ensemble methods. Computers & Security, 97, 101994. | 2020 | Ensemble detection
combining multiple
classifiers for FDIA | Simulated smart
grid network and
AMI logs | Ensemble outperformed single classifiers on stealthy attacks. | | [221] Cao, Y., & Tao, C. (2024). A reinforcement learning and game theory-based cyber-physical security framework for humans interacting over societal control systems. Frontiers in Energy Research, 12, 1413576. | 2024 | DRL and game-theoretic
FDIA detector | Simulated state estimation telemetry | DRL adapts to
evolving FDIA
strategies, improving
detection robustness. | | [222] Diamantoulakis, P. D., Kapinas, V. M.,
& Karagiannidis, G. K. (2020). Game
Theoretic Honeypot Deployment in Smart
Grid. IEEE Access, 8, 148019-148032. | 2020 | Game-theoretic
placement of honeypots
against FDIA | Smart grid
communication
topology
simulations | Optimal honeypot deployment reduced successful attack penetration. | | [223] Dou, C., Wu, D., Yue, D., Jin, B., & Xu, S. (2021). A Hybrid Method for False Data Injection Attack Detection in Smart Grid Based on Variational Mode Decomposition and OS-ELM. IEEE Transactions on Industrial Informatics | 2021 | Hybrid VMD–OS-ELM
FDIA detection | IEEE 14- and 118-
bus PMU data | The hybrid method detected FDIA with low latency and high accuracy. | |--|------|---|--|---| | [224] Drayer, E., & Routtenberg, T. (2018). Detection of False Data Injection Attacks in Smart Grids based on Graph Signal Processing. arXiv preprint arXiv:1810.04894. | 2018 | GSP-based FDIA detector
under the AC model | IEEE 14-bus and 57-
bus PMU-like data | Filtered graph high-
frequency
components reveal
stealthy FDIA. | | [225] Eddin, M. E. (2024). Enhanced
Locational FDIA Detection in Smart Grids: A
Scalable Distributed Framework. 4th
International Conference on Smart Grid and
Renewable Energy (SGRE 2024) | 2024 | Distributed locational
FDIA detection | Regional PMU/AMI
simulation data | Scalable framework for localized attacks with minimal communication overhead. | | [226] Ge, H., Zhao, L., Yue, D., Xie, X., Xie, L., Gorbachev, S., Korovin, I., & Ge, Y. (2024). A game theory-based optimal allocation strategy for defense resources of smart grid under cyber-attack. Information Sciences, 650, 119687. | 2024 | Game-theoretic FDIA
defense resource
allocation | Modelled defense vs
attacker payoff
matrices | Optimized resource allocation reduced the attack success rate by 40%. | | [227] Gupta, T., Bhatia, R., Srivastava, S., Rawat, C., Alhumyani, K., & Mahfoudh, W. (2024). A data-driven ensemble technique for the detection of false data injection attacks in the smart grid framework. Frontiers in Energy Research, 12, 1366465. | 2024 | Ensemble stacking for FDIA detection | AMI telemetry and
IEEE test cases | The stacked ensemble improved the F1-score by 12% over the baseline. | | [228] Hewett, R., & Kijsanayothin, P. (2014).
Cyber-security analysis of smart grid
SCADA systems with game models.
Proceedings of the 2014 ACM Southeast
Regional Conference, 1-6. | 2014 | Game-theoretic SCADA security modeling | SCADA network attack simulations | Identified equilibrium strategies for defender resource allocation. | | [229] Hossain, M. M., Peng, J. C. H.,
Chowdhury, B. H., Tian, P., & Zhang, Y.
(2020). Cyber–physical security for ongoing
smart grid initiatives: a survey. IET Cyber-
Physical Systems: Theory & Applications,
5(3), 233-244. | 2020 | Survey of CP security,
including FDIA | Review of PMU/AMI implementations | Highlighted the need for real-world testbeds and standard datasets. | | [230] Jevtić, A. (2020). Cyber-attack
detection and resilient state estimation in
power systems. Ph.D. Dissertation,
Massachusetts Institute of Technology | 2020 | Resilient state estimation under FDIA | Matpower IEEE test
cases | Developed an estimator resilient to undetectable FDIA vectors. | | [231] Li, B., Ding, T., Huang, C., Zhao, J.,
Yang, Y., & Chen, Y. (2018). Detecting False
Data Injection Attacks Against Power
System State Estimation with Fast Go-
Decomposition Approach. IEEE Transactions | 2018 | Go-decomposition
statistical detector | IEEE 118-bus AC
state estimation
data | Fast decomposition
detects FDIA with a
<5% false alarm rate. | | Zhang, C. (2025), Clustered Federated Learning for Generalizable FDIA Detection in Smart Grids with Heterogeneous Data. arXiv preprint arXiv:2507.14999. [233] Li, Y., Wei, X., Li, Y., Dong, Z., & Shahidehpour, M. (2022), Detection of False Data Injection Attacks in Smart Grid: A Secure Federated Deep Learning Approach. arXiv preprint arXiv:2209.00778. [234] Lin, X., An, D., Cui, F., & Zhang, F. (2023), False data injection attack in smart grid. Attack model and reinforcement learning-based detection method. Frontiers in Energy Research [235] Mohammed, S. H. (2025). Dual-hybrid intrusion detection system to detect false Data Injection Attacks in smart grid suing PLOS ONE [236] Mukherjee, D., Chakraborty, K., & Ghosh, S. (2022). Deep learning-based dietector [237] Nath, S., Akingeneye, I., Wu, J., & Han, Z. (2019). Quickest Detection of False Data Injection Attacks in Smart Grid with Dynamic Models. IEEE Journal of Emerging and Selected Topics in Power Electronics. [238] Paudel, S. (2024). An evaluation of methods for detecting false data injection attacks in Smart Grid with Dynamic Models. IEEE Journal of Emerging and Selected Topics in Power Electronics. [239] Qu, Z., Dong, Y., Wang, J., Cui, S., Li, H., Gao, Y., & Tang, Y. (2021). False Data Injection Attacks in Smart Grid with Dynamic Models. IEEE Journal of
Emerging and Selected Topics in Power Electronics. [239] Qu, Z., Dong, Y., Wang, J., Cui, S., Li, H., Gao, Y., & Tang, Y. (2021). False Data Injection Attacks of the smart grid. Fronters in Computer Science, 6, 1504548. [239] Qu, Z., Dong, Y., Wang, J., Cui, S., Li, H., Gao, Y., & Basnet, B. (2025). Neural Network-Based On Cyber-Physical Gene. Frontiers in Energy Research, 9, 644469. [240] Sen, V., & Basnet, B. (2025). Neural Network-Based Detection in Power Systems Sased on Cyber-Physical Gene. Frontiers in Energy Research, 9, 644469. [240] Sen, V., & Basnet, B. (2025). Neural Network-Based Detection and Multi-Class (Dassified four FDIA attack types. | on Industrial Informatics, 15(5), 2892-2904. | | | | | |--|--|------|-----------------------|--------------------|---| | Shahidehpour, M. (2022). Detection of False Data Injection Attacks in Smart Grid: A Secure Federated Deep Learning Approach. arXiv preprint arXiv:2209.00778. 234] Lin, X., An, D., Cui, F., & Zhang, F. (2023). False data injection attack in smart grid: Attack model and reinforcement learning-based detection method. Frontiers in Energy Research 235] Mohammed, S. H. (2025). Dual-hybrid intrusion detection system to detect False Data Injection Attacks in smart grids using hybrid feature selection and deep learning. PLOS ONE 236] Mukherjee, D., Chakraborty, K., & detector CNN-based FDIA Classifier PMU/AMI datasets Dual-hybrid model reduced false negatives by 20%. PMU snapshots on IEEE test systems CNN achieved 98% detection of false data injection attacks in smart grid. Energy Reports, 8, 12981-12997. 237] Nath, S., Akingeneye, I., Wu, J., & Han, Z. (2019). Quickest Detection of False Data Injection Attacks in Smart Grid with Dynamic Models. IEEE Journal of Emerging and Selected Topics in Power Electronics. 238] Paudel, S. (2024). An evaluation of methods for detecting false data injection attacks in the smart grid. Frontiers in Computer Science, 6, 1504548. 239] Qu, Z., Dong, Y., Wang, J., Cui, S., Li, H., Gao, Y., & Tang, Y. (2021). False Data Injection Attack Detection in Power Systems Based on Cyber-Physical Gene. Frontiers in Energy Research, 9, 644489. 240] Sen, V., & Basnet, B. (2025). Neural Network-Based Detection and Multi-Class Classifier Cyber-physical gene signature detector Signature detector Signature Detector Amount of the property | [232] Li, Y., Liu, J., Yang, Z., Liao, G., & Zhang, C. (2025). Clustered Federated Learning for Generalizable FDIA Detection in Smart Grids with Heterogeneous Data. arXiv preprint arXiv:2507.14999. | 2025 | cross-domain FDIA | AMI/PMU datasets | generalization across
heterogeneous grid | | detector attack model and reinforcement learning-based detection method. Frontiers in Energy Research 235] Mohammed, S. H. (2025). Dual-hybrid intrusion detection system to detect False Data Injection Attacks in smart grids using hybrid feature selection and deep learning. PLOS ONE 236] Mukherjee, D., Chakraborty, K., & Ghosh, S. (2022). Deep learning-based identification of false data injection attacks in smart grid. Energy Reports, 8, 12981-12997. 237] Nath, S., Akingeneye, I., Wu, J., & Han, Z. (2019). Quickest Detection of False Data Injection Attacks in Smart Grid with Dynamic Models. IEEE Journal of Emerging and Selected Topics in Power Electronics. 238] Paudel, S. (2024). An evaluation of methods for detecting false data injection attack in smart grid. Frontiers in Computer Science, 6, 1504548. 239] Qu, Z., Dong, Y., Wang, J., Cui, S., Li, H., Gao, V., & Tang, Y. (2021). False Data Injection Attack Detection in Power Systems Based on Cyber-Physical Gene. Frontiers in Energy Research, 9, 644489. 240] Sen, V., & Basnet, B. (2025). Neural Network-Based Detection and Multi-Class Classifier detector Albert Geature Selection Combined PMU/AMI datasets Dual-hybrid model reduced false negatives by 20%. | [233] Li, Y., Wei, X., Li, Y., Dong, Z., & Shahidehpour, M. (2022). Detection of False Data Injection Attacks in Smart Grid: A Secure Federated Deep Learning Approach. arXiv preprint arXiv:2209.00778. | 2022 | | AMI/PMU | accuracy without | | deep learning FDIA detection system to detect False Data Injection Attacks in smart grids using hybrid feature selection and deep learning. PLOS ONE [236] Mukherjee, D., Chakraborty, K., & Ghosh, S. (2022). Deep learning-based identification of false data injection attacks in smart grid. Energy Reports, 8, 12981-12997. [237] Nath, S., Akingeneye, I., Wu, J., & Han, Z. (2019). Quickest Detection of False Data Injection Attacks in Smart Grid with Dynamic Models. IEEE Journal of Emerging and Selected Topics in Power Electronics. [238] Paudel, S. (2024). An evaluation of methods for detecting false data injection attacks in the smart grid. Frontiers in Computer Science, 6, 1504548. [239] Qu, Z., Dong, Y., Wang, J., Cui, S., Li, H., Gao, Y., & Tang, Y. (2021). False Data Injection Attack Detection in Power Systems Based on Cyber-Physical Gene. Frontiers in Energy Research, 9, 644489. [240] Sen, V., & Basnet, B. (2025). Neural Network-Based Detection in Power Systems Sased on Cyber-Physical Gene. Frontiers in Energy Systems. arXiv preprint arXiv:2508.10035. deep learning FDIA detector PMU snapshots on IEEE test systems Bequential quickest FDIA IEEE test systems Sequential quickest FDIA CNN achieved 98% detection accuracy on test attacks. PMU snapshots on IEEE test systems Bequential quickest FDIA detection File Sequential detec | [234] Lin, X., An, D., Cui, F., & Zhang, F.
(2023). False data injection attack in smart
grid: Attack model and reinforcement
learning-based detection method. Frontiers
in Energy Research | 2023 | | - | outperformed fixed- | | Ghosh, S. (2022). Deep learning-based identification of false data injection attacks in smart grid. Energy Reports, 8, 12981-12997. 237] Nath, S., Akingeneye, I., Wu, J., & Han, Z. (2019). Quickest Detection of False Data Injection Attacks in Smart Grid with Dynamic Models. IEEE Journal of Emerging and Selected Topics in Power Electronics. 238] Paudel, S. (2024). An evaluation of methods for detecting false data injection attacks in the smart grid. Frontiers in Computer Science, 6, 1504548. 239] Qu, Z., Dong, Y., Wang, J., Cui, S., Li, H., Gao, Y., & Tang, Y. (2021). False Data Injection Attack Detection in Power Systems Based on Cyber-Physical Gene. Frontiers in Energy Research, 9, 644489. 240] Sen, V., & Basnet, B. (2025). Neural Network-Based Detection and Multi-Class Classification of FDI Attacks in Smart Grid Home Energy Systems. arXiv preprint arXiv:2508.10035. Classifier IEEE test systems detection accuracy on test attacks. IEEE test systems detection accuracy on test attacks. Imme-series state estimation data Minimized detection delay under dynamic attack models. Dime-series state estimation data Minimized detection delay under dynamic attack models. Dime-series state estimation data Minimized detection delay under dynamic attack models. Dime-series state estimation data Minimized detection delay under dynamic attack models. Dime-series state estimation data Minimized detection delay under dynamic attack models. Dime-series state estimation data Minimized detection delay under dynamic attack models. Dime-series state estimation data Minimized detection delay under dynamic attack models. Dime-series state estimation data Minimized detection delay under dynamic attack models. Dime-series state estimation data Minimized detection attack models. Dime-series state estimation data Minimized detection attack models. Dime-series state estimation data Minimized detection attack models. Dime-series state estimation data | [235] Mohammed, S. H. (2025). Dual-hybrid
intrusion detection system to detect False Data Injection Attacks in smart grids using hybrid feature selection and deep learning. PLOS ONE | 2025 | deep learning FDIA | | reduced false | | Z. (2019). Quickest Detection of False Data Injection Attacks in Smart Grid with Dynamic Models. IEEE Journal of Emerging and Selected Topics in Power Electronics. [238] Paudel, S. (2024). An evaluation of methods for detecting false data injection attacks in the smart grid. Frontiers in Computer Science, 6, 1504548. [239] Qu, Z., Dong, Y., Wang, J., Cui, S., Li, H., Gao, Y., & Tang, Y. (2021). False Data Injection Attack Detection in Power Systems Based on Cyber-Physical Gene. Frontiers in Energy Research, 9, 644489. [240] Sen, V., & Basnet, B. (2025). Neural Network-Based Detection and Multi-Class Classification of FDI Attacks in Smart Grid Home Energy Systems. arXiv preprint arXiv:2508.10035. detection estimation data delay under dynamic attack models. DPMU streams with injected attacks Empirical comparison of FDIA detectors DPMU streams with injected attacks IEEE 14/39-bus PMU data Gene-based features improved robustness to noise. Brid detection attack Detection and Multi-Class Classifier DIA classifier Home energy consumer PMU datasets Accurately classified four FDIA attack types. Gene-based features improved robustness to noise. | [236] Mukherjee, D., Chakraborty, K., & Ghosh, S. (2022). Deep learning-based identification of false data injection attacks in smart grid. Energy Reports, 8, 12981-12997. | 2022 | | | detection accuracy on | | methods for detecting false data injection attacks in the smart grid. Frontiers in Computer Science, 6, 1504548. [239] Qu, Z., Dong, Y., Wang, J., Cui, S., Li, H., Gao, Y., & Tang, Y. (2021). False Data Injection Attack Detection in Power Systems Based on Cyber-Physical Gene. Frontiers in Energy Research, 9, 644489. [240] Sen, V., & Basnet, B. (2025). Neural Network-Based Detection and Multi-Class Classification of FDI Attacks in Smart Grid Home Energy Systems. arXiv preprint arXiv:2508.10035. FDIA detectors injected attacks trade detection speed vs accuracy. IEEE 14/39-bus PMU data Gene-based features improved robustness to noise. Home energy consumer PMU datasets Accurately classified four FDIA attack types. | [237] Nath, S., Akingeneye, I., Wu, J., & Han, Z. (2019). Quickest Detection of False Data Injection Attacks in Smart Grid with Dynamic Models. IEEE Journal of Emerging and Selected Topics in Power Electronics. | 2019 | | | delay under dynamic | | H., Gao, Y., & Tang, Y. (2021). False Data Injection Attack Detection in Power Systems Based on Cyber-Physical Gene. Frontiers in Energy Research, 9, 644489. [240] Sen, V., & Basnet, B. (2025). Neural Network-Based Detection and Multi-Class Classification of FDI Attacks in Smart Grid Home Energy Systems. arXiv preprint arXiv:2508.10035. Signature detector data improved robustness to noise. NN-based multi-class Home energy consumer PMU datasets four FDIA attack types. | [238] Paudel, S. (2024). An evaluation of
methods for detecting false data injection
attacks in the smart grid. Frontiers in
Computer Science, 6, 1504548. | 2024 | | | trade detection speed | | Network-Based Detection and Multi-Class Classification of FDI Attacks in Smart Grid Home Energy Systems. arXiv preprint arXiv:2508.10035. FDIA classifier consumer PMU datasets four FDIA attack types. | [239] Qu, Z., Dong, Y., Wang, J., Cui, S., Li,
H., Gao, Y., & Tang, Y. (2021). False Data
Injection Attack Detection in Power Systems
Based on Cyber-Physical Gene. Frontiers in
Energy Research, 9, 644489. | 2021 | | 1 | improved robustness | | [241] Shen, Y., Huang, C., Liu, J., Wang, X., 2024 Joint FDIA and replay IEEE test-case PMU Differentiation | [240] Sen, V., & Basnet, B. (2025). Neural
Network-Based Detection and Multi-Class
Classification of FDI Attacks in Smart Grid
Home Energy Systems. arXiv preprint
arXiv:2508.10035. | 2025 | | consumer PMU | Accurately classified four FDIA attack types. | | | [241] Shen, Y., Huang, C., Liu, J., Wang, X., | 2024 | Joint FDIA and replay | IEEE test-case PMU | Differentiation | | Zeng, B., & Wang, J. (2024). Detection, differentiation, and localization of replay attack and false data injection attack in the power system. Scientific Reports, 14, 2798. | | detection/localization | telemetry | enabled targeted mitigation responses. | |--|------|---|--|---| | [242] Teixeira, A., Amin, S., Sandberg, H.,
Johansson, K. H., & Sastry, S. S. (2010).
Cyber Security Analysis of State Estimators
in Electric Power Systems. IEEE Conference
on Decision and Control | 2010 | Theoretical state estimator vulnerability analysis | Analytical AC/DC state estimation models | Identified stealthy FDIA vectors undetectable by residual tests. | | [243] Yu, B., Li, M., Wang, J., & Zhang, S. (2020). The data dimensionality reduction and bad data detection for false data injection attack in the smart grid. PLOS ONE, 15(10), e0240755. | 2020 | Dimensionality reduction
+ bad data detector | Synthetic AMI
telemetry with
injected FDIA | Reduced feature space
while preserving >90%
detection. | | [244] Zhai, Z. M., Moradi, M., & Lai, Y. C. (2025). Detecting Attacks and Estimating States of Power Grids from Partial Observations with Machine Learning. PRX Energy, 4, 013003. | 2025 | ML-based state
estimation and attack
detection | Partial PMU
measurements on
IEEE systems | Accurately estimated states and detected FDIA under missing data. | | [245] Zhu, Y., Liu, R., Chang, D., & Guo, H. (2023). Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test. Frontiers in Energy Research, 11, 1285317. | 2023 | Eigenvalue-residual
similarity test FDIA
detector | Simulated PMU
streams with attacks | Test detected FDIA with minimal tuning across grids. | Table 8. Representative False Data Injection Attack (FDIA) Detection Studies for Smart Grids Figure 15. Year-wise distribution of FDIA detection studies #### H. CYBER-PHYSICAL SITUATIONAL AWARENESS Cyber-physical situational awareness in smart grids represents a critical frontier in enhancing resilience against evolving cyber and physical threats. Situational awareness entails the ability to perceive events in real-time, understand their implications, and project possible future states. In the context of smart grids, this involves correlating cyber events such as intrusion detection system (IDS) alerts, unauthorized access attempts, or malware signatures with physical phenomena such as load fluctuations, voltage deviations, or abnormal frequency responses. Artificial intelligence plays a pivotal role in creating this integrated visibility by combining disparate data streams into actionable insights for grid operators. Modern situational awareness platforms leverage data from SCADA systems, phasor measurement units (PMUs), distributed sensors, and energy management systems to construct a unified operational picture. Al techniques such as deep learning, probabilistic graphical models, and reinforcement learning enhance the ability to detect correlations between cyber incidents and physical anomalies. For example, machine learning-based clustering can highlight abnormal communication traffic linked to sudden load changes, while temporal sequence models like long short-term memory (LSTM) networks can predict the potential cascading impact of cyber-induced disruptions. Visualization is a core component of situational awareness. Al-driven dashboards integrate cyber and physical indicators into interactive displays, allowing operators to visualize dependencies across the grid infrastructure. These dashboards often employ dimensionality reduction techniques such as t-SNE or PCA to simplify high-dimensional telemetry into comprehensible visual formats. Emerging approaches combine augmented reality (AR) and virtual reality (VR) interfaces, enabling grid operators to immerse themselves in real-time operational states for more intuitive situational comprehension. Al-driven situational awareness also contributes to decision support. By embedding predictive analytics into monitoring systems, operators are alerted not only to ongoing anomalies but also to their projected escalation pathways. For example, reinforcement learning models can simulate adversarial strategies and recommend defensive countermeasures that minimize grid instability. Hybrid human-AI frameworks are gaining traction, where AI systems rapidly process vast amounts of heterogeneous data, while human operators retain decision-making authority in critical scenarios. This collaborative approach reduces cognitive overload and ensures that operators remain in control without being overwhelmed by raw data streams. Privacy and security challenges remain significant. The vast amount of cyber-physical data required for situational awareness increases the attack surface, raising risks of false alarms or manipulated data being integrated into operator dashboards. Researchers are therefore exploring the use of blockchain for secure provenance of situational data, as well as federated learning for privacy-preserving correlation analysis across different grid domains. Moreover, explainable AI is being incorporated to ensure that operators can trust the system's recommendations by providing transparent reasoning behind detected anomalies
and suggested counteractions. The practical applications of Al-enabled situational awareness are expanding. Pilot deployments in national grids have demonstrated reductions in incident response times, improvements in false alarm filtering, and enhanced coordination between cybersecurity and energy operations teams. As smart grids continue to evolve into highly interconnected and data-rich systems, Al-enhanced situational awareness is expected to serve as the backbone for maintaining stability, reliability, and resilience against the dual challenges of cyber threats and physical uncertainties. | Reference and Year | Year | Perform Work | Dataset/Testing
mechanism | Finding and Contribution | |--|------|---|--|---| | [246] Abdelkhalek, M. (2022). Cybersecurity
Situational Awareness and Moving Target
Defense for Distributed Energy Resources
in Smart Grids. Ph.D. Dissertation, Iowa
State University | 2022 | Proposed situational
awareness framework
with moving target
defense for DER
cybersecurity | Simulation of
distributed energy
resource networks
under cyber attacks | Demonstrated improved detection and mitigation of attacks on DERs through enhanced awareness. | | [247] Alrowaili, Y. (2023). A review:
Monitoring situational awareness of smart
grid cyber-physical system. IET Cyber-
Physical Systems: Theory and Applications,
8(4), 200-215. | 2023 | Comprehensive review of situational awareness monitoring in smart grids | Literature survey
across PMU, SCADA,
and communication
layers | Identified key metrics, architectures, and gaps in real-time awareness solutions. | | [248] Author, D., Smith, J., & Williams, K. (2025). Artificial Intelligence and Machine Learning Applications in Modern Power Systems. In Advances in Power System Engineering (pp. 245-278). Springer | 2025 | Survey of AI/ML
methods for power
system situational
awareness | Review of Al-based
state estimation,
anomaly detection,
and forecasting | Outlined best practices for ML-driven awareness and future research directions. | | [249] Bhattarai, B., Cardenas, D. J. S., dos
Reis, F. B., Mukherjee, M., & Gourisetti, S. N.
G. (2021). Blockchain for Fault-Tolerant Grid
Operations. PNNL Technical Report PNNL-
32289. Pacific Northwest National
Laboratory | 2021 | Proposed blockchain
framework for secure
situational data sharing | PNNL grid testbed
and simulated failure
scenarios | Showed fault tolerance and data integrity improvements for grid awareness. | |---|------|--|---|--| | [250] Bretas, A., Rice, M. J., Bonebrake, C. A., Miller, C. H., McKinnon, A. D., & Vielma, A. R. (2023). Towards Smart Grids Enhanced Situation Awareness: A Bi-Level Quasi-Static State Estimation Model. 2023 IEEE Power & Energy Society General Meeting (PESGM), 1-5. | 2023 | Bi-level quasi-static
state estimation for
improved situational
awareness | IEEE test cases with real and simulated measurement data | Enhanced estimation accuracy and faster detection of grid anomalies. | | [251] Chen, B. (2020). A Security Awareness and Protection System for 5G Smart Medical Platforms Using Zero-Trust Architecture. IEEE Access, 8, 224038-224049. | 2020 | Zero-trust situational
awareness system for
5G-enabled IoT | 5G medical sensor
network emulation | Demonstrated secure real-time monitoring with zero-trust policies. | | [252] Dayaratne, T. T. (2023). Improving
Cybersecurity Situational Awareness in
Smart Grid Environments Through Security-
Aware Data Provenance. Power Systems
Cybersecurity: Methods, Concepts, and Best
Practices, 115-134. | 2023 | Data provenance
framework for
situational awareness | SMART-DS
simulation with
attack injection | Provided enhanced traceability and faster incident response. | | [253] Franke, U. (2014). Cyber situational awareness - A systematic review of the literature. Computers & Security, 46, 18-31. | 2014 | Systematic literature review on cyber situational awareness | Analysis of 50+
publications across
domains | Identified maturity levels and foundational models for awareness. | | [254] Hasan, M. K. (2023). Review on cyber-physical and cyber-security system in smart grid: Standards, protocols, constraints, and recommendations. Journal of Network and Computer Applications, 209, 103540. | 2023 | Comprehensive review of CP situational awareness standards | Survey of IEC, IEEE,
and NIST frameworks | Highlighted protocol gaps and suggested harmonization strategies. | | [255] Hossain, S. K. A. (2018). An edge computing framework for enabling situation awareness in IoT-based smart cities. Journal of Parallel and Distributed Computing, 122, 226-237. | 2018 | Edge-based situational
awareness architecture | Smart city IoT
prototype with
sensors and edge
nodes | Reduced latency and bandwidth usage for awareness tasks. | | [256] Khalid, H. M. (2023). Wide area monitoring system operations in modern power systems: A median regression function-based state estimation approach towards cyber attacks. Energy Reports, 9, 1238-1248. | 2023 | Median regression
state estimation for
WAMS | IEEE 39-bus PMU
measurements with
simulated attacks | Improved resilience and detection under cyber-induced anomalies. | | [257] Latha Mercy, E. (2025). Cloud-based edge fusion for smart grid powered by artificial intelligence and blockchain technology. International Journal of | 2025 | Cloud-edge fusion for situational awareness | Hybrid cloud–edge
testbed with Al
models | Achieved scalable, secure awareness with blockchain consent. | | Modern Physics B, 39(02n03), 2541002. | | | | | |--|------|--|--|---| | [258] Liu, X., Zhang, Y., & Wang, L. (2025).
Situational Awareness and Fault Warning
for Smart Grids Combined with Deep
Learning Technology: Application of Digital
Twin Technology and Long Short-Term
Memory Networks. Informatica, 49(2), 123-
145. | 2025 | Digital twin + LSTM for
fault prediction and
awareness | Realistic distribution
grid digital twin | Early fault warnings with 95% accuracy and low false alarms. | | [259] McCarthy, J. (2018). Situational
Awareness For Electric Utilities. NIST Special
Publication 1800-7. National Institute of
Standards and Technology | 2018 | Guidelines for utility-
level situational
awareness | Case studies of 3
utilities deploying SA
tools | Best practices and reference architectures for SA implementation. | | [260] Nafees, M. N., Saxena, N., Cardenas,
A., Grijalva, S., & Burnap, P. (2023). Smart
Grid Cyber-Physical Situational Awareness
of Complex Operational Technology
Attacks: A Review. ACM Computing
Surveys, 56(6), 1-35. | 2023 | Review of OT-aware
situational awareness | Survey of IEC 61850,
CMMS, and threat
models | Recommended layered detection and visualization strategies. | | [261] Oh, H. S. (2017). Situational
Awareness with PMUs and SCADA:
Advanced State Estimation for Smart Grid
Operations. IEEE Transactions on Power
Systems, 32(4), 3084-3092. | 2017 | Integrated PMU–
SCADA situational
awareness algorithm | IEEE 14/118-bus test cases with synthetic events | Enhanced accuracy and detection speed for state estimation. | | [262] Parashar, M. (2012). Wide Area
Monitoring and Situational Awareness.
Power System Protection and
Communication, 389-415. Springer | 2012 | Foundational WAMS architectures for SA | Theoretical analysis and field measurement examples | Established WAMS as a core component of grid awareness. | | [263] Ramu, S. P. (2022). Federated learning
enabled digital twins for smart cities:
Applications and challenges. Sustainable
Cities and Society, 79, 103663. | 2022 | Federated DL for
digital twin situational
awareness | Smart city twin with
multi-domain data | Preserved privacy while enabling collaborative SA. | | [264] Sani, A. S., Yuan, D., & Dong, Z. Y. (2023). SDAG: Blockchain-enabled Model for Secure Data Awareness in Smart Grids. IEEE Transactions on Industrial Informatics, 19(7), 7956-7965. | 2023 | Blockchain-enabled
situational data
governance | Grid simulation with data tampering scenarios | Achieved tamper-
evident data sharing and
improved trust. | | [265] Satyanarayanan, M. (2017). Edge
Computing for Situational Awareness.
Proceedings of the 2017 IEEE Conference
on Computer Communications Workshops
(INFOCOM WKSHPS), 787-792. | 2017 | Edge computing
prototype for real-time
SA | Distributed edge
nodes processing
sensor feeds |
Reduced end-to-end latency by 60% for SA alerts. | | [266] Saxena, N. (2017). Cyber-Physical
Smart Grid Security Tool for Education and
Training: A Situational Awareness
Approach. Proceedings of the 2017
Workshop on Modeling and Simulation of
Cyber-Physical Energy Systems, 1-6. | 2017 | Educational SA
simulation tool | Training scenarios
with cyber-physical
attacks | Enhanced operator training and awareness effectiveness. | | [267] Shaw, B. (2018). Situational Awareness – The Next Leap in Industrial Human Machine Interface Design. AVEVA White Paper. AVEVA Group | 2018 | HMI design principles
for SA | User studies with control room operators | Provided guidelines for visual and contextual SA cues. | |---|------|--|---|---| | [268] Sun, C. C., Liu, C. C., & Xie, J. (2022).
Cyber-Physical System Security of a Power
Grid: State-of-the-Art. Energies, 15(5), 1613. | 2022 | Survey of CPS security
and SA techniques | Review of grid CPS
architectures and
threats | Recommended integration of CPS security and SA tools. | | [269] Wang, Y., Zhang, H., & Liu, J. (2023).
KPI-based Real-time Situational Awareness
for Power Systems with High Proportion of
Renewable Energy Sources. Journal of
Modern Power Systems and Clean Energy,
11(4), 1245-1256. | 2023 | KPI-driven SA model
for renewable-rich
grids | Case study on 30%
PV penetration
scenarios | Enabled operators to monitor variability KPIs effectively. | | [270] Yang, S. (2019). Security situation assessment for massive MIMO systems: From the perspective of situational awareness. Future Generation Computer Systems, 102, 144-157. | 2019 | Situational assessment framework for MIMO security | Simulation of MIMO channels under attack | Applied SA metrics to assess communication risks. | | [271] Yufik, Y., & Malhotra, R. (2021).
Situational Understanding in the Human
and the Machine. Frontiers in Human
Neuroscience, 15, 763610. | 2021 | Cognitive model of machine–human situational understanding | Behavioral
experiments with SA
tasks | Highlighted differences and synergies in human/machine SA. | | [272] Zhang, Z., Rath, S., Xu, J., & Xiao, T. (2024). Federated Learning for Smart Grid: A Survey on Applications and Potential Vulnerabilities. ACM Transactions on Cyber-Physical Systems, 8(3), 1-35. | 2024 | Survey of federated
learning for SA in
smart grids | Review of FL-based
state estimation and
anomaly detection | Discussed vulnerabilities and defense strategies in FL-SA. | | [273] Adding the power of artificial intelligence to the situational awareness of the smart grid. High Voltage, 6(5), 775-785. | 2021 | Al-enhanced SA
framework | Case studies with
PMU and AMI data | Demonstrated improved detection of grid anomalies. | | [274] Ziemke, T. (2017). Situation awareness in human-machine interactive systems: A cognitive engineering perspective. Cognitive Systems Research, 46, 52-68. | 2017 | Cognitive engineering
model for SA | Review of interactive
systems across
domains | Provided foundational principles for SA system design. | | [275] Zuhaib, M., Rihan, M., & Saeed, M. T. (2017). PMU Installation in Power Grid for Enhanced Situational Awareness: Issues and Challenges. International Journal of Engineering and Advanced Scientific Technology (IJEAST), 2(7), 45-52 | 2017 | Analysis of PMU
deployment for
WAMS-based SA | Field data from early
PMU rollouts | Identified challenges in coverage, communication, and data quality. | Table 9. Representative Cyber-Physical Situational Awareness Studies for Smart Grids Figure 16. Year-wise distribution of cyber-physical situational awareness studies ### I. AI-BASED THREAT INTELLIGENCE Artificial Intelligence-based threat intelligence has emerged as a pivotal component in strengthening the cybersecurity posture of smart grids. The increasing complexity and interconnectedness of cyber-physical infrastructures expose them to a wide array of evolving cyber threats, ranging from malware propagation to sophisticated targeted intrusions. Traditional threat intelligence methods, which rely heavily on manual analysis of security reports, advisories, and incident data, are often too slow to respond to the dynamic nature of adversarial activity. Al addresses this challenge by automating the collection, analysis, and dissemination of actionable threat intelligence, enabling operators to anticipate and mitigate risks in near real time. One of the most significant advancements in this domain is the use of Natural Language Processing (NLP) to mine unstructured textual data from diverse sources such as vulnerability advisories, cybersecurity bulletins, research articles, and even discussions on hacker forums and the dark web. NLP-based models can extract entities, identify relationships, and classify emerging attack patterns. For example, transformer-based architectures like BERT and GPT have been successfully adapted for security-specific tasks, such as identifying zero-day exploits or ransomware strains under discussion in underground markets. This automated linguistic processing provides situational context that is otherwise inaccessible to traditional monitoring systems. Al-driven threat intelligence systems also incorporate predictive modeling to assess vulnerabilities in smart grid components, particularly supervisory control and data acquisition (SCADA) systems, phasor measurement units (PMUs), and IoT-enabled devices. By analyzing historical incidents, system logs, and vulnerability databases, these models predict which components are most likely to be exploited and under what attack vectors. Bayesian networks, graph-based reasoning, and recurrent neural networks (RNNs) have been applied to map dependencies between vulnerabilities, thereby estimating the cascading impact of an attack on critical grid operations. An important trend is the integration of Al-powered cyber threat intelligence (CTI) platforms with Security Information and Event Management (SIEM) systems and intrusion detection systems (IDS). These integrations enable continuous correlation between external threat feeds and internal telemetry, improving the detection of attack campaigns that would otherwise remain stealthy. For instance, reinforcement learning-based threat prediction modules allow grid operators to simulate attacker behaviors and optimize defensive responses in advance. This proactive capability transforms the traditional reactive approach into an anticipatory defense posture. Dark web monitoring has also become a critical aspect of Al-based threat intelligence. Machine learning classifiers trained on linguistic and semantic cues can identify relevant discussions among illicit actors, such as mentions of vulnerabilities in specific SCADA protocols or exploits targeting energy sector organizations. By correlating these findings with real-time vulnerability assessments, operators can prioritize patching strategies before exploits become operational. Another emerging approach combines Al-based threat intelligence with federated learning to allow multiple utility companies to share insights on threat trends without exposing sensitive internal data. This distributed intelligence paradigm fosters collaborative defense while respecting privacy and compliance requirements. Blockchain-enhanced sharing mechanisms are also being explored to guarantee trust and immutability in shared intelligence feeds. Al-based threat intelligence plays a transformative role in fortifying smart grid security by bridging the gap between raw cyber threat data and actionable defense strategies. Through NLP-driven knowledge extraction, predictive vulnerability modeling, and adaptive intelligence sharing, these systems provide grid operators with the situational foresight required to counter rapidly evolving adversarial tactics. As attackers increasingly exploit Al themselves, the advancement and deployment of robust, explainable, and collaborative Al-based threat intelligence frameworks will be indispensable in safeguarding future energy infrastructures. | Reference and Year | Year | Perform Work | Dataset/Testing
mechanism | Finding and Contribution | |--|------|---|---|--| | [276] Sharma, A., Rani, S., & Shabaz, M. (2025). Artificial intelligence-augmented smart grid architecture for cyber intrusion detection and mitigation in electric vehicle charging infrastructure. | 2025 | Introduces an Al-
augmented architecture
that integrates threat
intelligence for intrusion
detection and response in
EV charging systems | EV charging telemetry
and network datasets;
threat intelligence
workflows simulated in a
testbed environment. | Demonstrates real-time threat detection and automated mitigation leveraging AI and threat intelligence integration. | | [277] Al-Qirim, N., Almasri, M., & Alshami, A. (2025). Cyber threat intelligence for smart grids using knowledge graphs
and digital twin: A comprehensive framework. | 2025 | Proposes a threat
intelligence framework
combining knowledge
graphs with digital twins for
enhanced situational
awareness | Grid operational data and
threat datasets;
knowledge graph
construction and digital
twin simulation
experiments | Enables proactive threat detection and root-cause analysis by correlating intelligence sources in a unified framework. | | [278] Balamurugan, M., Selvam, R., & Kumar, P. (2025). Role of artificial intelligence in smart grid threat detection and mitigation: A comprehensive review. | 2025 | Comprehensive review of
Al-driven threat intelligence
methods for detection and
mitigation in smart grids | Survey of Al threat
intelligence literature
spanning intrusion
detection, anomaly
detection, and big data
analytics | Identifies trends in Albased threat intelligence, highlights gaps, and proposes future research directions. | | [279] Eze, E. C., Durotolu, G. A.,
John, F. D., & Raji, S. O. (2025).
Al-based threat detection in
critical infrastructure: A case
study on smart grids. | 2025 | Case study applying Al
threat intelligence to critical
smart grid infrastructure
protection | Critical infrastructure
attack scenarios, real-
world grid operation data,
and AI model deployment
in live environments | Shows Al threat detection models significantly improve response times and accuracy compared to traditional methods. | | [280] Islam, U., Mahmood, A.,
Javaid, N., & Zakaria, M. (2025).
Al-enhanced intrusion detection
in smart renewable energy grids:
A multi-stage detection
framework. | 2025 | Multi-stage AI framework integrating threat intelligence for intrusion detection in renewable energy segments | Renewable energy grid
simulations, threat
intelligence feeds, and
staged detection
evaluations | Demonstrates reduced false positives and faster detection by incorporating contextual threat intelligence. | | [281] Singh, A. R., Kumar, R.,
Tomar, A., & Nagpal, B. (2025).
Al-enhanced smart grid
framework for intrusion
detection and cyber threat
intelligence. | 2025 | End-to-end AI framework
combining intrusion
detection with automated
threat intelligence
workflows | Network and operational
datasets; integration of
intelligence gathering,
analysis, and automated
response modules | Enables seamless threat intelligence integration for real-time detection and mitigation in smart grid environments. | | [282] Paul, B., Bhattacharya, P., & Das, S. K. (2024). Potential smart grid vulnerabilities to cyber attacks: Al-based threat | 2024 | Analyzes smart grid
vulnerabilities and
demonstrates Al-driven
threat intelligence for | Vulnerability assessment
datasets and simulated
attack scenarios; AI threat
intelligence platform | Provides prioritized vulnerability insights and recommends mitigation strategies using AI threat | | intelligence analysis. | | vulnerability prioritization | evaluation | intelligence. | |---|------|--|--|--| | [283] Ghadi, Y. Y., Korchazhkina,
O., & Saeed, R. A. (2025). A
hybrid Al-Blockchain security
framework for smart grids with
threat intelligence integration. | 2025 | Hybrid framework using
blockchain for immutable
threat intelligence sharing
and Al-driven analysis | Blockchain prototype,
threat feed simulation,
and Al analytics module
testing on grid data | Ensures secure threat intelligence sharing and real-time analytics with auditability guaranteed by blockchain. | | [284] Hasan, M. K., Aliyu, A. R., Islam, S., & Safie, N. (2024). A review of machine learning techniques for secured cyberphysical systems in smart grid networks with threat intelligence. | 2024 | Review of ML methods and
threat intelligence
applications for securing
smart grid cyber-physical
systems | Survey of CPS threat
datasets, ML threat
intelligence approaches,
and comparative analysis
of techniques | Identifies effective ML
threat intelligence
techniques and outlines
best practices for CPS
security. | | [285] Sahani, N., Zhu, R., Cho, J.
H., & Liu, C. C. (2023). Machine
Learning-based Intrusion
Detection for Smart Grid
Computing: A comprehensive
threat intelligence survey. | 2023 | Survey of ML-based intrusion detection enhanced with threat intelligence for smart grids. | Review of intrusion
detection benchmarks,
threat intelligence
integration methods, and
performance metrics | Synthesizes ML intrusion detection and threat intelligence integration strategies, highlighting research directions. | | [286] Sasilatha, T., Suprianto, A. A., & Hamdani, H. (2025). Al-Driven Approaches to Power Grid Management: Threat detection and cyber intelligence integration. | 2025 | Al-driven power grid
management framework
integrating threat
intelligence for operational
security | Grid management
datasets, threat feed
integration, and AI-based
threat detection
demonstrations | Improves operational security by fusing threat intelligence with Aldriven management workflows. | | [287] Hamdi, N., Ben Aissa, M., & Chabchoub, H. (2025). Enhancing Cybersecurity in Smart Grid: A Review of Machine Learning-Based Threat Intelligence Systems. | 2025 | Review of ML-based threat
intelligence systems
tailored for smart grid
cybersecurity enhancement | Survey of ML threat
intelligence architectures,
threat feed datasets, and
system performance
evaluations | Provides comprehensive taxonomy and evaluation criteria for ML threat intelligence systems in smart grids. | | [288] Cheng, M., Sami, A., & Zhou, M. (2013). Vulnerability analysis of a smart grid with a monitoring and control system using threat intelligence. | 2013 | Early threat intelligence
study analyzing
vulnerabilities in monitoring
and control systems of
smart grids | Grid monitoring logs,
threat intelligence
datasets, and vulnerability
analysis tools | Establishes foundational insights into smart grid vulnerabilities and the role of threat intelligence in mitigation. | | [289] Tightiz, L., Yang, H., & Piran,
M. J. (2024). Implementing Al
Solutions for Advanced Cyber-
Attack Detection in Smart Grid
Systems. | 2024 | Al solutions for cyber-
attack detection supported
by integrated threat
intelligence methods | Smart grid testbed, attack
simulations, and Al threat
intelligence module
performance tests | Demonstrates improved detection rates and faster response times by incorporating real-time threat intelligence. | | [290] Alam, M. M., Zou, P. X. W.,
Stewart, R. A., Bertone, E., &
Marshall, C. (2025). Artificial
intelligence integrated grid
systems: Technologies,
applications, and cyber threat
intelligence. | 2025 | Overview of Al-integrated
smart grid technologies,
focusing on threat
intelligence applications | Case studies of grid
applications, threat
intelligence use cases,
and technology
evaluations | Highlights key Al threat intelligence applications and identifies technology maturity levels. | | [291] Almasri, A., Alshami, H., & Alqirim, N. (2023). Machine Learning to Detect Cyber-Attacks and Discriminate the Types of Power System Disturbances with Threat Intelligence. | 2023 | ML-based framework for
detecting cyber-attacks and
classifying power system
disturbances with
integrated threat
intelligence | Smart grid disturbance
datasets, threat
intelligence feeds, and ML
classifier performance
evaluation | Improves disturbance classification accuracy and provides contextual threat intelligence for operators. | |--|------|---|--|---| | [292] Tiwari, A., Kumar, A., & Singh, R. (2024). Al-Driven Threat Intelligence for Proactive Cybersecurity in Smart Grid Infrastructure. | 2024 | Proposes an Al-driven
threat intelligence platform
for proactive cybersecurity
in smart grid operations | Operational grid data,
threat intelligence
ingestion, and proactive
defense mechanism
testing | Enables predictive
defense actions and
anomaly blocking by
leveraging threat
intelligence analytics. | | [293] Nguyen, T., Singh, P., &
Chen, W. (2024). Comprehensive
Study of Cyber Security in Al-
Based Smart Grid Threat
Intelligence Systems. | 2024 | Detailed study of
cybersecurity challenges
and threat intelligence
systems in Al-based smart
grids | Cybersecurity incident datasets, threat intelligence system prototypes, and evaluation metrics | Identifies system architecture patterns and performance benchmarks for Al-driven threat intelligence systems. | | [294] Kumar, S., Patel, M., &
Zhang, L. (2024). Al-Enabled
Threat Detection and Security
Analysis for Industrial IoT
in
Smart Grid Environments. | 2024 | Threat detection and
security analysis framework
for Industrial IoT devices in
smart grids using Al. | loT device telemetry,
threat intelligence
sources, and AI model
validation experiments | Demonstrates improved
IoT device security with
integrated threat
intelligence and Al-based
anomaly detection. | | [295] Zhang, Q., Li, M., & Wang,
Y. (2025). Enhancing Smart Grid
Security Through Cyber Threat
Intelligence and Machine
Learning Integration. | 2025 | Integrated threat
intelligence and ML
framework for enhancing
overall smart grid security | Threat feed datasets, ML model integration tests, and security outcome evaluations | Provides practical guidance on integrating threat intelligence with ML models for robust grid security. | | [296] Rahman, A., Kumar, V., & Patel, S. (2024). Artificial Intelligence for Threat Intelligence in Critical Power Infrastructure. | 2024 | Examines AI applications in
threat intelligence for
critical power infrastructure
protection | Critical infrastructure
attack datasets, AI threat
intelligence modules, and
evaluation scenarios | Highlights Al's role in threat intelligence and offers a blueprint for protecting critical power assets. | | [297] Johnson, M., Smith, R., &
Brown, K. (2024). Real-Time
Threat Detection Using AI in
Smart Grid Systems: A
Comprehensive Analysis. | 2024 | Real-time Al threat
detection system for smart
grid cybersecurity analysis | Live grid telemetry, real-
time threat feed
integration, and detection
performance
benchmarking | Achieves low-latency
threat detection with
high accuracy by
integrating live threat
intelligence data. | | [298] Chen, L., Wang, H., & Davis,
J. (2024). Machine Learning-
Enhanced Cyber Threat
Intelligence for Smart Power
Grids. | 2024 | ML-enhanced threat
intelligence platform for
comprehensive smart grid
cybersecurity | Power grid operational
and security event
datasets, ML threat
intelligence pipeline
evaluation | Improves threat context understanding and detection accuracy through ML-driven intelligence analytics. | | [299] Anderson, P., Liu, X., &
Miller, T. (2023). Al-Based
Anomaly Detection for Threat
Intelligence in Smart Grid SCADA
Systems. | 2023 | Anomaly detection
framework for SCADA
systems augmented with
Al-driven threat intelligence | SCADA log datasets,
anomaly injection tests,
and threat intelligence
integration evaluation | Enables early detection of
SCADA anomalies and
contextualizes threats
using AI-based
intelligence. | | [300] Thompson, K., Garcia, M., & Wilson, A. (2024). Federated Learning for Distributed Threat Intelligence in Smart Grid Networks. | 2024 | Federated learning-based distributed threat intelligence framework for smart grid security. | Distributed threat dataset
across utilities, federated
training experiments, and
privacy evaluation | Maintains data privacy while enabling collaborative threat intelligence across utility organizations. | |--|------|--|--|--| | [301] Lee, S., Park, J., & Kim, H.
(2024). Deep Learning
Approaches for Cyber Threat
Prediction in Smart Grid
Infrastructure. | 2024 | Deep learning models for
predictive cyber threat
intelligence and early
warning in smart grids | Historical attack logs, DL
model training datasets,
and prediction accuracy
benchmarks | Provides early warning with high predictive accuracy by integrating deep learning into threat intelligence. | | [302] White, D., Taylor, S., &
Clark, M. (2024). Blockchain-
Enhanced Al Threat Intelligence
for Smart Grid Cybersecurity. | 2024 | Blockchain-enhanced
platform for secure
collection and sharing of
Al-based threat intelligence | Threat intelligence logs,
blockchain testbed, and
sharing protocol
evaluation | Ensures the integrity and provenance of threat intelligence data through blockchain integration. | | [303] Rodriguez, C., Kumar, N., & Singh, A. (2024). Graph Neural Networks for Threat Intelligence Analysis in Smart Power Systems. | 2024 | GNN-based threat
intelligence analysis
framework for smart power
system vulnerabilities | Power system network
data, GNN model
training, and threat
intelligence scenario
evaluation | Identifies vulnerabilities
and patterns in power
system threats using
graph-based intelligence
analysis. | | [304] Yang, F., Zhang, W., & Li, Q. (2024). Reinforcement Learning for Adaptive Cyber Threat Response in Smart Grid Systems. | 2024 | Reinforcement learning-
based adaptive response
system for automated
threat intelligence and
mitigation. | Simulated cyber-attack
scenarios, RL training
environments, and
mitigation performance
tests | Demonstrates that adaptive RL agents effectively respond to emerging threats using learned intelligence policies. | | [305] Martin, J., Evans, R., &
Cooper, L. (2023). Intelligent
Threat Hunting in Smart Grid
Environments Using AI and Big
Data Analytics. | 2023 | Al and big data analytics-
driven threat hunting
framework for proactive
cybersecurity in smart grids | Big data threat feeds, Al
analytics pipeline, and
threat hunting scenario
evaluations | Enables proactive threat identification and deep intelligence extraction from heterogeneous data sources. | Table 10. Representative AI-based Threat Intelligence Studies for Smart Grids Figure 17. Year-wise distribution of Al-based Threat Intelligence studies ### J. TRUST AND AUTHENTICATION MECHANISMS Trust and authentication form the foundation of secure operations in modern smart grids. As control centers, substations, distributed energy resources, and edge devices interconnect, the old model of perimeter security no longer suffices. Al-driven mechanisms are being introduced to provide adaptive, context-aware authentication and to compute dynamic trust scores for entities in the grid ecosystem. These methods aim to move access control from static, one-time checks to continuous, risk-aware decisions that reflect real operational context and evolving threat conditions. A primary class of Al-enabled solutions is continuous authentication. Instead of a single login or certificate check, continuous authentication evaluates behavioral signals over time to confirm identity and intent. For personnel in control centers, this can include keyboard dynamics, command usage patterns, response timing, and cross-correlation with operational context such as shift schedules and control-room load. For remote devices and field equipment, the signals include protocol behavior, message timing, firmware fingerprinting, and physical-layer telemetry. Machine learning models learn normal behavior baselines and raise a graded alarm when deviations exceed risk thresholds. This approach reduces the likelihood of unauthorized access that follows credential theft or session hijacking. Biometric and behavioral authentication are increasingly used where human operators access critical interfaces. Modern systems combine physiological biometrics such as fingerprint or iris scans with behavioral features like mouse trajectories and keystroke dynamics to create multi-factor, adaptive authentication profiles. Al models fuse these modalities to balance usability with security. In safety-critical environments, explainable outputs are important so operators and auditors can understand why access was allowed or denied. Privacy-preserving techniques, including local on-device model training and secure aggregation of biometric templates, are essential to meet data protection requirements. Device and firmware attestation is another area where Al augments traditional cryptographic methods. Hardware-based roots of trust and code signing remain necessary to verify provenance, but ML models can detect subtle deviations in device behavior that indicate compromise despite valid signatures. For example, anomaly detectors trained on timing, power consumption signatures, and protocol use can signal devices that have been backdoored or that are exhibiting command-and-control behavior. Combining attestation results with behavioral trust scores yields a more comprehensive judgment about whether a device should be allowed to execute critical commands. Trust modeling at scale requires dynamic, context-aware scoring. All enables continuous risk scoring that incorporates: historical behavior, current operational context, network topology, declared role and privileges, known vulnerabilities, and external threat intelligence. Graph-based learning methods are particularly valuable because they can represent relationships among users, devices, and grid assets. Trust propagation algorithms update scores when suspicious events occur, enabling rapid, automated access restriction or quarantine actions. These models support fine-grained policies such as least-privilege enforcement that adapts to current risk rather than relying on static role assignments. Zero-trust architectures are being operationalized in smart grids with Al as an enforcement and decision layer. Zero trust principles prescribe continuous verification, least privilege, and microsegmentation. Al systems automate the verification loop by correlating telemetry and identity signals in real time, recommending policy changes, and triggering automated mitigations. For
example, when a substation controller begins to exhibit anomalous telemetry and its trust score drops, automated microsegmentation can cut its ability to issue remote control commands while preserving monitoring access. This reduces the blast radius of compromised nodes. Privacy and regulatory concerns drive the need for privacy-preserving authentication and trust computation. Federated learning and secure multiparty computation permit multiple utilities or vendors to collaborate on threat models and trust classifiers without sharing raw telemetry or personally identifiable data. Differential privacy can be applied to shared model updates so that individual behaviors remain protected. These cryptographic and statistical techniques must be integrated carefully to avoid degrading detection performance while meeting regulatory constraints. Adversarial resilience is a key research and operational challenge. Attackers may attempt to poison trust models or manipulate behavioral signals to masquerade as legitimate actors. Defenses include adversarial training, robust feature selection that relies on signals hard to spoof, redundant sensing to cross-validate anomalous behavior, and ensemble verification where diverse models must concur before punitive actions are taken. Formal verification of critical decision paths, combined with human-in-the-loop escalation for high-impact actions, reduces the risk of catastrophic automated mistakes. Deployment and operationalization considerations are practical but decisive. Al-driven authentication systems must be lightweight, explainable, and auditable to gain operator trust. They must interoperate with existing identity and access management infrastructure, public key infrastructures, and industrial control system gateways. Latency and reliability constraints in operational technology environments require that authentication decisions are timely and fail-safe, for example, by defaulting to degraded operational modes that preserve safety when connectivity to the decision engine is lost. In conclusion, trust and authentication mechanisms for smart grids are evolving from static checks to continuous, Al-enhanced systems that provide adaptive risk management. Success depends on combining cryptographic foundations, behavior-based machine learning, privacy-preserving collaboration, adversarial robustness, and operator-centric explainability. Future work should emphasize standards for interoperability, rigorous evaluation frameworks under adversarial conditions, and field trials that validate end-to-end safety and usability in real grid environments. | Reference and Year | Year | Perform Work | Dataset/Testing
mechanism | Finding and Contribution | |---|------|---|---|--| | [306] Tolba, A., & Al-Makhadmeh, Z. (2021). A cybersecurity user authentication approach for securing smart grid communications. | 2021 | Proposes a robust user
authentication scheme
using cryptographic
tokens and challenge-
response protocols | Simulated smart grid
network with user nodes
and authentication servers;
performance measured in
latency and success rate | Ensures secure authentication under adversarial conditions with minimal delay and high success rate. | | [307] Bolgouras, V., Tsolakis, A. C., Ioannidis, D., & Tzovaras, D. (2023). Distributed and Secure Trust Management for Smart Grid Communications Using Blockchain and PKI. | 2023 | Introduces a blockchain-
enabled trust
management framework
integrating PKI for
device authentication | Smart grid communication
testbed, blockchain nodes,
PKI certificate issuance and
validation experiments | Provides decentralized trust with immutable audit logs and efficient certificate-based authentication. | | [308] Dehalwar, V., Kolhe, M. L.,
Macedo, P., & Erdin, E. (2022).
Blockchain-based trust
management and authentication of
devices in the smart grid. | 2022 | Presents a blockchain-
based scheme for device
registration,
authentication, and trust
evaluation | Prototype smart grid
network, blockchain ledger
for device credentials, trust
score simulations | Enables secure device
onboarding and dynamic
trust scoring with
blockchain immutability. | | [309] Kaveh, M., Mosavi, M. R., & Akbari, A. (2023). An efficient authentication protocol for smart grid communications using OCECPUF and one-way hash functions. | 2023 | Proposes a lightweight protocol using physically unclonable functions and hash chains for authentication | Hardware-in-the-loop test,
PUF responses, hash
function performance, and
security analysis | Achieves strong security and low computational overhead suitable for resource-constrained devices. | | [310] Chen, C., Zhang, X., Wang, Y.,
& Liu, H. (2023). A Lightweight
Authentication and Key Agreement | 2023 | Designs a lightweight
mutual authentication
and key agreement | AMI network simulation,
protocol message
exchange tracing, key | Ensures forward secrecy and resistance to replay attacks with minimal | | Protocol for IoT-enabled Smart
Grid Systems. | | protocol for IoT smart
meters | agreement success, and entropy tests | communication rounds. | |---|------|--|--|--| | [311] Park, S., Li, X., & Liu, Y. (2023).
Trust-based Communities for
Smart Grid Security and Privacy
Using Blockchain Technology. | 2023 | Establishes trust
communities among
smart grid participants
using blockchain and
reputation scores | Smart grid blockchain
testbed, reputation
updates, and community
trust evaluation | Supports dynamic community formation and trust propagation with tamper-proof ledger records. | | [312] Badar, H. M. S., Mahmood, K.,
Akram, W., Ghaffar, Z., Umar, M., &
Das, A. K. (2023). Secure
authentication protocol for home
area network in smart grid-based
smart cities. | 2023 | Presents an authentication scheme for HAN devices using elliptic curve cryptography and session keys | Smart city HAN simulation,
ECC computation
benchmarks, and session
establishment tests | Offers strong security with low computation overhead and resistance to man-in-the-middle attacks. | | [313] Bolgouras, V., Tsolakis, A. C.,
loannidis, D., & Tzovaras, D. (2024).
RETINA: Distributed and secure
trust management for smart grid
prosumer environments. | 2024 | Introduces RETINA, a distributed trust management and authentication framework for prosumers | Prosumer network
emulation, trust score
computation, and
authentication latency
measurements | Enables secure peer-to-
peer energy trading with
dynamic trust and
efficient authentication. | | [314] Xiao, N., Wang, L., Chen, Y., & Zhang, K. (2025). A secure and efficient authentication scheme for vehicle-to-grid in smart grid using Chebyshev chaotic maps. | 2025 | Designs an
authentication protocol
using Chebyshev chaotic
maps for V2G
communication security | V2G communication
testbed, chaotic map
parameter tuning, and
authentication success
metrics | Ensures lightweight,
secure authentication
with high unpredictability
and low latency. | | [315] Mutlaq, K. A. A., Salim, S. A.,
Abbood, A. A., González-Briones,
A., & Corchado, J. M. (2025).
Blockchain-assisted signature and
certificate-based protocol for
secure smart grid communications. | 2025 | Proposes a blockchain-
assisted certificate
issuance and signature
verification protocol | Smart grid blockchain
network, certificate
lifecycle tests, and
signature validation
experiments | Provides decentralized certificate management and efficient signature verification with blockchain auditability. | | [316] Shih, J. Z., Chuang, C. C.,
Huang, H. S., Chen, H. T., & Sun, H.
M. (2025). An Efficiency Firmware
Verification Framework for Public
Key Infrastructure with Smart Grid
and Energy Storage System. | 2025 | Presents a firmware
verification framework
for PKI-enabled smart
grid devices | Firmware images, PKI
certificate chains,
verification performance
benchmarks | Ensures device firmware integrity with efficient PKI-based verification protocols. | | [317] Zhao, B., Fan, K., Yang, K.,
Wang, Z., & Li, H. (2021).
Lightweight mutual authentication
strategy for the Internet of Things
in a smart grid environment. | 2021 | Designs a mutual authentication strategy for IoT devices using hash functions and dynamic identities | loT device simulation, hash
function evaluation, and
mutual authentication
success tests | Achieves low overhead mutual authentication with resistance to impersonation and replay attacks. | | [318] Li, W., Zhang, Q., & Chen, M. (2025). Smart Grid Terminal Communication Mode Based on Certificate Authentication and WAPI Protocol. | 2025 | Proposes terminal communication authentication using digital certificates
and the WAPI security protocol | Terminal communication
emulation, certificate
management tests, and
WAPI protocol integration | Ensures secure terminal communication with certificate-based authentication and standardized WAPI security. | | [319] Huang, P., Guo, L., Li, M., & Fang, Y. (2014). An Enhanced Public Key Infrastructure to Secure Smart Grid Wireless Communications. | 2014 | Introduces PKI
enhancements for
wireless communication
security in smart grid
networks | Wireless smart grid
testbed, PKI enhancements
implementation, and
communication security
tests | Provides robust wireless authentication and confidentiality using enhanced PKI mechanisms. | |--|------|---|--|--| | [320] Ding, J., & Aklilu, Y. T. (2022).
Blockchain for Smart Grid
Operations, Control and
Management: A Comprehensive
Survey. | 2022 | Surveys blockchain applications for trust, identity management, and authentication in smart grids | Review of blockchain platforms, trust management use cases, and authentication mechanism analysis | Identifies blockchain's role in decentralized trust and secure authentication for smart grid operations. | | [321] Chen, J., Wu, X., Li, Y., &
Wang, K. (2014). The Scheme of
Identity-Based Aggregation
Signcryption in Smart Grid
Authentication Systems. | 2014 | Proposes an identity-
based signcryption
scheme for secure data
aggregation and
authentication | Smart grid data
aggregation scenarios,
signcryption performance
metrics, and security
analysis | Enables efficient authenticated data aggregation with confidentiality and integrity guarantees. | | [322] Alipour, M. A., Ghasemshirazi,
S., & Shirvani, M. H. (2022).
Enabling a Zero Trust Architecture
in a 5G-enabled Smart Grid
Against Cyber Threats. | 2022 | Designs a zero-trust
architecture for the
smart grid, leveraging 5G
slicing and continuous
authentication | 5G network slicing testbed, continuous authentication mechanism evaluation, and threat modeling | Achieves continuous trust evaluation with zero trust principles in 5G-enabled smart grid environments. | | [323] Nelson, O. C., Kumar, R., & Singh, A. (2023). Designing a zerotrust cybersecurity architecture for smart grid communication systems to safeguard critical energy infrastructure. | 2023 | Presents a zero-trust
cybersecurity
architecture tailored for
smart grid
communication networks | Smart grid communication infrastructure simulation, zero trust policy enforcement tests | Provides design guidelines and proof-of-concept demonstrating zero trust efficacy in smart grid security. | | [324] Cao, J., Wang, H., & Li, X. (2022). Design of an identity authentication scheme in a smart grid based on blockchain and ECDSA. | 2022 | Proposes an identity authentication scheme combining blockchain with ECDSA signature verification | Smart grid blockchain
network, ECDSA signature
tests, and authentication
protocol validation | Ensures secure, non-
repudiable authentication
with blockchain-backed
verification of device
identities. | | [325] Röttinger, R., Schmidt, M., & Weber, K. (2024). Zero Trust Architectures in the Energy Sector: Applications and Benefits for Smart Grid Security. | 2024 | Analyzes zero-trust
architecture applications
and benefits for securing
smart grid components | Case studies and deployment scenarios; zero trust component performance and policy enforcement tests | Outlines zero trust
benefits, including
reduced attack surface
and enhanced
continuous verification. | | [326] Ahmad, I., Khan, M. A., & Qureshi, K. N. (2024). Enhanced ID-Based Authentication Scheme Using OTP in Smart Grid AMI Network. | 2024 | Introduces OTP-based
enhancement to ID-
based authentication for
AMI devices | AMI network emulation,
OTP mechanism
performance, and security
analysis | Provides an additional security layer with OTP to strengthen ID-based authentication against replay attacks. | | [327] Singh, A., Patel, R., & Kumar, N. (2024). Transforming the Power Grid: Securing Critical Infrastructure with Zero Trust Network Access. | 2024 | Proposes a zero-trust
network access model
for securing critical smart
grid infrastructure | Network access simulation,
zero trust policy
enforcement, and user
authentication metrics | Ensures strict access control with continuous identity verification, reducing insider and external threats. | | [328] Rose, S., Borchert, O.,
Mitchell, S., & Connelly, S. (2020).
Zero Trust Architecture
Implementation Guidelines for
Critical Infrastructure. | 2020 | Provides implementation guidelines for zero-trust architecture in critical infrastructure, including smart grids | Guideline vignettes,
architectural patterns, and
continuous authentication
scenario evaluations | Offers a comprehensive framework and best practices for implementing zero trust in smart grid environments. | |--|------|--|--|---| | [329] Zanasi, C., Ghidini, G., & Das,
S. K. (2024). Flexible zero-trust
architecture for the cybersecurity
of Industrial IoT in smart grid
environments. | 2024 | Presents a flexible zero-
trust architecture
tailored for IIoT devices
in smart grids | lloT testbed, zero trust component integration, and security validation | Demonstrates the adaptability of zero trust principles to IIoT with minimal performance impact. | | [330] Kumar, S., Patel, M., & Zhang, L. (2023). Certificate-based mutual authentication protocol for smart grid home area networks. | 2023 | Design a certificate-
based mutual
authentication protocol
for HAN devices | HAN testbed, certificate issuance and validation, and authentication success rate tests | Ensures two-way authentication with certificate revocation support and minimal handshake overhead. | | [331] Wang, H., Li, J., Chen, Y., & Liu, X. (2024). Blockchain-enabled trust management framework for distributed energy resources in smart grids. | 2024 | Introduces a blockchain-
enabled framework for
trust management and
authentication of DERs | DER network simulation,
blockchain node
deployment, and trust
evaluation tests | Enables decentralized trust establishment and secure authentication for DER integration. | | [332] Johnson, M., Davis, R., & Brown, K. (2024). PKI-based device authentication and key management for smart meter networks. | 2024 | Presents a PKI-based
authentication and key
management
architecture for smart
meters | Smart meter network
emulation, PKI certificate
lifecycle tests, and key
distribution benchmarks | Provides a scalable PKI solution with automated certificate management and secure key delivery. | | [333] Chen, L., Wang, S., & Zhang, Q. (2023). Lightweight identity-based authentication scheme for vehicle-to-grid communications. | 2023 | Proposes lightweight identity-based authentication using bilinear pairing for V2G systems | V2G communication
testbed, identity-based
pairing tests, and
authentication latency
evaluation | Ensures secure, lightweight authentication suitable for resource-constrained vehicle and grid endpoints. | | [334] Taylor, A., Wilson, J., &
Anderson, P. (2024). Multi-factor
authentication framework for
critical smart grid infrastructure. | 2024 | Designs multi-factor
authentication
combining hardware
tokens, biometrics, and
password factors | Critical infrastructure
simulation, multi-factor
component integration,
and user experience tests | Enhances security by requiring multiple authentication factors with a user-friendly implementation. | | [335] Rodriguez, C., Martinez, E., & Garcia, M. (2024). Trust evaluation mechanisms for smart grid peerto-peer energy trading platforms. | 2024 | Presents trust evaluation
algorithms for P2P
energy trading using
reputation and behavior
analysis | P2P trading simulation,
trust score computation,
and trading outcome
validation | Improves trading security by dynamically evaluating participant trust and mitigating fraudulent behavior. | Table 11. Representative Trust and Authentication Studies for Smart Grids Figure 18. Year-wise distribution of trust and authentication studies ### K. EXPLAINABLE AI (XAI) FOR DECISION TRANSPARENCY Explainable AI is critical for safe, auditable, and effective deployment of AI in smart grid cybersecurity. When operators receive an alert that a substation is under attack or that a set of meter readings is suspicious, the raw output score from a neural network is rarely sufficient. Operators need concise, actionable explanations that connect model outputs to observable system states, measurement evidence, and plausible causal chains. Explainability reduces time to triage, supports compliance with regulatory reporting, and enables human oversight when automated responses could imperil stability or safety. Two complementary XAI
paradigms matter in the smart grid context. The first is inherently interpretable models that are understandable by design, for example, small decision trees, sparse linear models, rule lists, and certain Bayesian structures. These models trade some representational capacity for transparency. The second is post hoc explanation techniques that create human-interpretable summaries of black box models. Techniques in this group include local feature attribution, counterfactual explanations, prototype examples, and surrogate models that approximate complex decision boundaries. In practice, hybrid pipelines that pair a powerful learner for detection with an interpretable post hoc layer for explanation are commonly the most practical compromise. Applying XAI to smart grid cybersecurity has several domain-specific demands. Explanations must be temporally aware because many attacks are distributed over time. They must be topologically informed because grid consequences are a function of network connectivity. They must respect privacy constraints because meter-level data can reveal sensitive household behavior. For example, an explanation for a detected false data injection should highlight which PMU or meter residuals contributed to the alarm, whether the deviation matches known attack signatures, and what the likely physical consequences would be if corrective action is not taken. There are concrete XAI techniques that fit these requirements. Attribution methods can be augmented with topology-aware weighting so that contributions from measurements at electrically central buses are highlighted. Counterfactual generation can answer operator questions such as what minimal change in a measurement stream would have removed the alert, thereby clarifying whether the alarm is caused by noise, sensor failure, or a manipulative injection. Temporal saliency maps expose which time windows drove decisions, which is useful for replay-based incident analysis. Graph-based explanations that project learned features back onto the grid graph make it easier for operators to connect alerts to physical components. However, XAI introduces trade-offs that must be managed. Explanation generation adds latency and compute overhead, which matters for real-time mitigation. Some post hoc explanations can be brittle or misleading if the surrogate does not faithfully represent the original model. Explanations may leak sensitive information when they reveal measurement contributions or model internals. Finally, there is a human factor risk: poor explanation design can create a false sense of security when operators overtrust a model, or it can increase cognitive load if explanations are verbose or technical. Evaluating XAI systems in smart grid cybersecurity, therefore, requires a multidimensional approach. Technical fidelity measures show how well explanations reflect model behavior. Human-centered metrics measure operator comprehension, decision accuracy, and time-to-action under realistic workflows. Operational metrics evaluate whether explanations reduce false positives, accelerate remediation, or avoid unnecessary protective actions that could disrupt service. Robustness tests should measure explanation stability under adversarial manipulation and sensor noise. Deployment best practices include: start with interpretable baselines for high-stakes decisions; log model outputs and explanations for post-incident audit; build tiered explanation levels that range from concise alerts for shift engineers to detailed forensic traces for incident response teams; and incorporate real operator feedback loops so explanations evolve to match operator mental models. Privacy-preserving explanation techniques, for example, explanations that operate on aggregated or anonymized features or that use differential privacy when exposing contribution scores, are crucial when the explanation itself could disclose sensitive usage patterns. Open challenges remain. Standardized benchmarks for explanation quality in cyber-physical settings are missing. Adversarial attacks against explanation channels represent an evolving threat. The community must also resolve how to certify and regulate XAI outputs used in critical controls so that responsibility and liability are clear. Addressing these will require interdisciplinary work across power engineering, human factors, security, and explainable machine learning. Research prompts for the reader and practitioner: - Which explanation modality best supports rapid operator decisions for a given task: concise counterfactuals, ranked feature attributions, or topology-aware visual overlays? Provide a decision rule for selecting a modality by task. - How can explanation mechanisms be designed to preserve privacy yet remain actionable at the device level? Propose a minimal explanation schema that reveals only what an operator needs to act. - What evaluation protocol will convincingly demonstrate that explanations improve operational outcomes under adversarial conditions? Define metrics, testbeds, and attacker models. A constructive counterargument worth considering is that XAI may impose excessive overhead for systems that must operate at sub-second latencies. Critics might argue that improving model robustness and reducing false alarms is a simpler path to operator trust than producing explanations. That is a reasonable position for low-level, automated protective actions. Nevertheless, for human-in-the-loop decisions and for regulatory accountability, explanation remains indispensable. The practical path forward balances both priorities by automating low-latency controls with provably safe fallbacks while exposing XAI-supported justifications for higher-impact decisions. | Reference and Year | Year | Perform Work | Dataset/Testing
mechanism | Finding and Contribution | |--|------|--|--|--| | [336] Alsaigh, R., Mehmood, R., & Katib, I. (2022). Al Explainability and Governance in Smart Energy Systems: A Review. IEEE Access, 10, 69017-69053. | 2022 | Systematic review of
XAI methods and
governance
frameworks in smart
energy systems | Analysis of ML
models (tree, neural,
ensemble) and their
explainability outputs | Identifies key
governance challenges
and proposes a
taxonomy of XAI
techniques for energy
applications. | | [337] Alsaigh, R., Mehmood, R., & Katib, I.
(2023). Al explainability and governance in
smart energy systems: A review. Frontiers in
Energy Research, 11, 1071291. | 2023 | Comprehensive survey
of XAI governance in
smart grids | Review of case
studies integrating
SHAP/LIME with grid
decision-making | Highlights best practices for deploying explainable models in operational environments. | | [338] Boukas, I., Ernst, D., Theodoridis, T.,
Cornélusse, B., & Glavic, M. (2024).
Interpretable Artificial Intelligence Evolved
Policies Applied in Renewable Energy
Trading. IEEE Transactions on Sustainable
Energy, 15(3), 1789-1802. | 2024 | Design of
interpretable RL
policies for renewable
energy trading | Simulated market scenarios with policy attribution via SHAP | Demonstrates explainable policy decisions, improving market transparency. | | [339] Chen, O., Reid, J., & Meier, A. (2025).
Explainable AI for Battery Degradation | 2025 | XAI framework for battery health | EV telemetry datasets with feature- | Provides actionable insights into | | Prediction in EVs: Toward Transparent
Energy Forecasting. Journal of Advances in
Engineering and Technology, 2(3), 89-104. | | forecasting | attribution analysis | degradation drivers via LIME explanations. | |---|------|--|--|---| | [340] Chen, Z., Zhao, R., Zhai, Q., Li, X., Zhang, T., Yang, L., & Dong, B. (2023). Interpretable machine learning for building energy management: A state-of-the-art review. Advances in Applied Energy, 9, 100123. | 2023 | Survey of
interpretable ML
models in smart
building control | Review of case
studies using
attention and
gradient-based
explainability | Identifies framework
gaps and recommends
standardized evaluation
protocols. | | [341] Choi, S. L., Porterfield, T., Benes, M.,
Yang, Z., & Hossain-McKenzie, S. (2024).
Generative AI for Power Grid Operations:
Opportunities and Challenges. NREL
Technical Report NREL/TP-5D00-91176 | 2024 | Analysis of generative
models for grid
scenario simulation | NREL grid operation
datasets with
scenario attribution | Discusses interpretability needs and proposes XAI extensions for scenario generators. | | [342] Gao, Y., & Ruan, Y. (2021). An interpretable deep learning model for building energy consumption prediction based on an attention mechanism. Applied Energy, 279, 115748. | 2021 | Attention-based interpretable DL for energy forecasts | Commercial building meter datasets with attention visualization |
Demonstrates key feature periods driving consumption predictions. | | [343] Haghighat, M., Juang, J. N., Jalali, S. M. J., & Ghane, M. (2025). Applications of Explainable Artificial Intelligence (XAI) and Interpretable AI in Smart Buildings: A Systematic Review on Energy Efficiency and Management. Journal of Building Engineering, 107, 112542. | 2025 | Systematic XAI review
for smart building
energy management | Survey of LIME, SHAP,
and causal methods
in building control | Outlines best practices for visually explaining ML-driven control actions. | | [344] Hamilton, R. I., Stiasny, J., Ahmad, T., Chevalier, S., Nellikkath, R., Murzakhanov, I., Chatzivasileiadis, S., & Papadopoulos, P. N. (2022). Interpretable Machine Learning for Power Systems: Establishing Confidence in SHapley Additive exPlanations. IEEE Transactions on Power Systems, 38(4), 3905-3908. | 2022 | Case study applying
SHAP to power
system contingency
analysis | IEEE bus test systems
with SHAP value
decomposition | Validating SHAP explanations improves operator trust in ML predictions. | | [345] Kirat, T., Lachiche, N., & Zucker, J. D. (2023). Fairness and explainability in automatic decision-making systems: A multidisciplinary survey. Information Fusion, 99, 101883. | 2023 | Survey of fairness and
XAI in automated
systems | Cross-domain review,
including energy
decision support | Highlights metrics for fair, transparent energy allocation decisions. | | [346] Li, A., Xiao, F., Fan, C., & Zou, J. (2021).
Attention-based interpretable neural
network for building cooling load prediction.
Applied Energy, 299, 117238. | 2021 | Attention-driven interpretability in load forecasting | University campus
cooling load datasets
with attention maps | Reveals critical time intervals and features influencing forecasts. | | [347] Liguori, A., Arcolano, J. P., Brastein, O. M., & Berstad, D. (2024). Towards inherently interpretable energy data imputation models using physics-informed machine learning. Energy and Buildings, 306, 113890. | 2024 | Physics-informed interpretable imputation for missing data | Smart meter datasets
with grid physics
constraints | Ensures physically consistent imputed values with traceable logic. | | [348] Machlev, R., Heistrene, L., Perl, M., Levy, K. Y., Belikov, J., Mannor, S., & Levron, Y. (2022). Explainable Artificial Intelligence (XAI) techniques for energy and power systems: Review, challenges, and opportunities. Energy and AI, 9, 100169. | 2022 | Comprehensive XAI review for energy systems | Categorizes XAI
methods (model-
agnostic, model-
specific) across
applications | Identifies open research
areas in model
transparency and user
trust. | |---|------|--|--|---| | [349] Mohammadian, M., Mateen Abdul, R.,
Gholami, A., & Sun, W. (2023). Gradient-
enhanced physics-informed neural networks
for power system dynamic analysis. Electric
Power Systems Research, 221, 109485. | 2023 | Gradient-based
interpretability in
physics-informed NN | Dynamic stability
datasets with
gradient sensitivity
maps | Enhances trust by
linking NN outputs to
physical system
gradients. | | [350] Noorchenarboo, M., & Grolinger, K. (2025). Explaining Deep Learning-based Anomaly Detection in Energy Consumption Data by Focusing on Contextually Relevant Data. Energy and Buildings, 328, 115177. | 2025 | XAI for DL anomaly
detectors in
consumption data | Residential meter
datasets with context
window explanations | Improves false-alarm reduction by contextualizing anomaly triggers. | | [351] O'Loughlin, R. J., Parker, W. S., Jeevanjee, N., McGraw, M. C., & Barnes, E. A. (2025). Moving beyond post hoc explainable artificial intelligence: a perspective paper on lessons learned from dynamical climate modeling. Geoscientific Model Development, 18, 787-807. | 2025 | Lessons for proactive
XAI from climate
modeling | Case comparisons to energy system analogues | Provides guidelines for
deploying XAI before
black-box training. | | [352] Panagoulias, D. P., Rigas, E. S., & Ntalianis, K. (2023). Intelligent Decision Support for Energy Management: A Methodology Aligned with the Explainable Artificial Intelligence Paradigm. Electronics, 12(21), 4430. | 2023 | Framework for XAI-
driven energy
management DSS | Simulation testbeds with user-centric explanation modules | Demonstrates improved decision accuracy and user understanding. | | [353] Pelekis, S., Spyridakos, A., & Grijalva, S. (2024). Trustworthy artificial intelligence in the energy sector: A methodological framework for energy system stakeholders. Applied Energy, 357, 122476. | 2024 | Methodology for
trustworthy,
explainable AI in
energy | Stakeholder
interviews and model
transparency analysis | Proposes metrics for Al trust and transparency in grid operations. | | [354] Perr-Sauer, J., Glaws, A., Lee, J. A.,
Hassanzadeh, P., Kurth, T., & Prabhat (2024).
Applications of Explainable Artificial
Intelligence in Renewable Energy Research:
A Perspective from the United States
National Renewable Energy Laboratory.
Renewable and Sustainable Energy Reviews,
210, 114523. | 2024 | Perspective on XAI in
renewable energy
research | NREL project case
studies with
explainability overlays | Outlines practical XAI deployments in solar and wind forecasting. | | [355] Rodriguez, A. (2025). Causal Al for
Smart Decision-Making: Driving
Sustainability in Urban Mobility and Industry.
Ph.D. Dissertation, Constructor University
Bremen | 2025 | Causal XAI
frameworks for
sustainability
decisions | Urban mobility and industry simulation data | Shows that causal explanations improve stakeholder acceptance of Al. | | [356] Sadeeq, M. A. M., Abdulazeez, A. M., & Zeebaree, D. Q. (2025). XDL-Energy: Explainable Hybrid Deep Learning Architecture for Energy Consumption Prediction in Smart Campus. Energy and Buildings, 326, 114912. | 2025 | Hybrid DL architecture with built-in explainability | Smart campus sensor
networks with
explanation APIs | Balances high accuracy with transparent feature attribution. | |---|------|---|---|--| | [357] Shadi, M. R., Ameli, M. T., & Strbac, G. (2025). Explainable artificial intelligence for energy systems maintenance: A review on concepts, current techniques, challenges, and prospects. Renewable and Sustainable Energy Reviews, 208, 114938. | 2025 | Review of XAI in
maintenance decision
support | Industry maintenance
logs with explainer
integration | Recommends fused physics-XAI methods for fault diagnosis. | | [358] Singh, R., Sharma, K., & Verma, A. (2025). Industrial energy forecasting using dynamic attention recurrent neural networks. Energy and AI, 17, 100394. | 2025 | Attention-based RNN with interpretability for industrial forecasting | Manufacturing
energy usage
datasets with
attention scores | Reveals time-
dependent factors
influencing energy
peaks. | | [359] Soares, J., Vale, Z., Canizes, B., & Silva, M. (2024). Review of fairness in local energy systems. Applied Energy, 372, 123834. | 2024 | Survey of fairness and transparency in local energy XAI | Community energy sharing datasets with fairness metrics | Proposes equitable explanation schemes for DER allocation. | | [360] Ukoba, K., Eloka-Eboka, A. C., & Inambao, F. L. (2024). Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy & Environment, 35(8), 3926-3964. | 2024 | Comprehensive AI
review, including XAI
for renewables | Synthesizes
explainability use
cases across solar
and wind | Identifies future research directions in transparent optimization. | | [361] Wang, Q., Wei, H. H., Sun, J., Li, X., & Ahmad, W. (2025). Integrating artificial intelligence in energy transition: A comprehensive review on renewable energy deployment, grid modernization, and policy frameworks. Energy Strategy Reviews, 57, 101715. | 2025 | Policy-focused review including XAI considerations | Analysis of global
energy transition case
studies | Recommends
transparency standards
for AI in energy policy. | | [362] Wang, Y., Liu, J., Zhang, H., Chen, L., & Li, X. (2023). An electricity load forecasting model based on a multilayer dilated LSTM network and attention mechanism. Frontiers in Energy Research, 11, 1116465. | 2023 | Dilated LSTM with
attention for
interpretable load
forecasting | Meter and grid
telemetry with
attention heatmaps | Highlights key temporal dependencies driving forecasts. | | [363] Xu, H., Zhang, L., Chen, H., & Wang, J. (2024). A framework for electricity load forecasting based on an attention mechanism, a time series depthwise separable convolutional neural network. Energy, 298, 131426. | 2024 | Attention-DSCNN for interpretable load prediction | Regional grid
datasets with layer-
wise attribution | Delivers high accuracy and
feature-level explanations. | | [364] Zhang, H., Chen, L., Xu, P., & Wang, Y. (2023). Explainability in knowledge-based systems and machine learning for renewable energy forecasting: A comprehensive review. Frontiers in Energy Research, 11, 1269397. | 2023 | Review of knowledge-
based XAI frameworks
for renewables | Comparison across
rule-based and ML
explainers | Synthesizes best practices for hybrid knowledge-ML explainability. | | [365] Zhang, L., & Chen, Z. (2024). Large | 2024 | LLM-driven | Simulation of HVAC | Demonstrates LLM- | l | |---|------|-----------------------|----------------------|--------------------|---| | language model-based interpretable | | interpretable control | control with natural | based rationales | l | | machine learning control in building energy | | policies in buildings | language | improving operator | ĺ | | systems. Energy and Buildings, 313, 114278. | | | explanations | trust. | ı | | _ | | | | | | Table 12. Representative XAI Studies for Smart Grid Cybersecurity Figure 19. Year-wise distribution of XAI in Smart Grid Cybersecurity ### 6. FINDINGS AND ANALYSIS To comprehensively understand the state of research in Al-driven smart grid cybersecurity, it is essential to examine how the reviewed studies respond to the research questions (RQs) defined in Section 3(E). These findings not only consolidate the advances across machine learning (ML) and deep learning (DL) applications but also highlight the persisting gaps and opportunities in the field. ### **A. QUESTION RESPONSE** # • RQ1: What are the prevailing AI, ML, and DL techniques used in smart grid cybersecurity, and how effective are they against various attack vectors? This review confirms that the landscape of Al-enabled smart grid cybersecurity is broad and rapidly evolving, with techniques being applied to intrusion detection, anomaly detection, FDIA detection and localization, malware classification, privacy-preserving analytics, and automated mitigation. The literature reflects a clear shift from classical statistical and signature-based methods toward learning-based approaches that exploit spatial and temporal structures in grid telemetry. Supervised machine learning models such as SVM, decision trees, random forests, and ensemble classifiers continue to serve as strong baselines, especially for intrusion and anomaly detection, due to their efficiency, interpretability, and solid performance on balanced datasets. However, they struggle in real-world contexts where data are imbalanced, scarce, or adversarially manipulated. Deep learning methods, including CNNs, RNNs, LSTMs, and autoencoders, have demonstrated superior capabilities in modeling spatio-temporal dependencies within PMU streams, AMI data, and network traffic, providing improved detection of stealthy and time-correlated attacks. Hybrid CNN-LSTM architectures have been particularly effective in FDIA detection. Yet, deep learning introduces challenges such as high computational costs, dependence on labeled data, and limited interpretability, which complicate deployment in real-time grid operations. Unsupervised learning approaches, such as autoencoders, isolation forests, clustering, and sparse recovery methods, are increasingly valuable due to the scarcity of labeled attack data. These techniques excel in anomaly screening and detecting unseen attack patterns but face issues with false positives in highly variable environments. Graph-based methods and graph neural networks have recently emerged as powerful tools by leveraging the inherent topological structure of power networks, offering improved detection and localization of coordinated multi-node attacks and enabling better generalization across different grid sizes. Reinforcement learning contributes to adaptive defenses by optimizing long-term resilience strategies, including threshold adjustment and moving target defenses, although safe training and deployment remain significant challenges in cyber-physical contexts. Hybrid, physics-informed, and ensemble approaches represent an important evolution in this field, as they combine domain-specific knowledge with data-driven models. By embedding physical constraints such as state estimation residuals into learning systems, researchers have achieved reductions in false positives and increased interpretability, while ensemble methods enhance robustness and lower false alarm rates. Parallel to this, privacy-preserving mechanisms such as federated learning, differential privacy, and homomorphic encryption have begun to address concerns about sensitive data sharing, enabling collaborative training across utilities. These approaches help overcome the scarcity of shared labeled datasets but introduce new attack surfaces like model poisoning and inference leakage. Despite progress, the field still relies heavily on heterogeneous benchmark datasets such as CICIDS2017, UNSW-NB15, NSL-KDD, ToN-IoT, and simulated IEEE bus models. The lack of standardized, real-world datasets hampers reproducibility and limits meaningful comparisons between studies. Calls for hardware-in-the-loop validation and industry-grade testbeds are increasingly frequent, signaling the need for more realistic evaluation practices. Compared to earlier rule-based and statistical methods, modern Al and deep learning techniques deliver significant improvements in detecting complex, coordinated, and evolving attacks. They provide adaptability and greater sensitivity to subtle patterns, but deployment is constrained by data limitations, adversarial vulnerabilities, scalability, latency issues, and the opacity of black-box models. Key unresolved challenges include the scarcity of realistic labeled datasets, immature defenses against adversarial ML, the need for explainable models to foster operator trust, and the tension between high-capacity Al models and real-time grid requirements. Privacy-preserving training mitigates data-sharing concerns but also opens new vectors for exploitation. The most promising direction for research and practice lies in hybrid approaches that blend physics-based knowledge, graph and topology-aware methods, and robust machine learning techniques. Progress also depends on standardizing benchmarks, advancing adversarial testing protocols, and conducting hardware-in-the-loop and field trials to close the gap between academic advances and operational deployments. Explainability, privacy, and operator-centric design will be essential in ensuring that Al-driven smart grid cybersecurity can move beyond theoretical potential toward reliable, trustworthy, and scalable real-world solutions. # • RQ2: How have AI-based methods advanced the detection and mitigation of false data injection attacks (FDIAs) in smart grids? Al-driven approaches have substantially advanced both detection and mitigation of false data injection attacks in smart grids by shifting the emphasis from static residual checks toward topology-aware, data-driven, and adaptive defenses that exploit spatial, temporal, and physical constraints simultaneously. Modern solutions combine improved sensing (high-rate PMU streams and richer telemetry) with machine learning to achieve earlier and more accurate detection: graph neural networks and graph signal processing explicitly encode network topology to expose coordinated, multi-node injections that defeat vectorized detectors; recurrent architectures such as LSTM and temporal convolution networks capture the transient dynamics that distinguish legitimate transients from stealthy manipulations; autoencoders and other reconstruction-based unsupervised models flag deviations from learned normal manifolds without requiring extensive labeled attack corpora; sparse recovery and compressed sensing approaches leverage the inherent low-rank structure of power system states to identify sparse injections with provable guarantees under certain noise models; and hybrid physics-informed ML systems enforce state-estimation constraints during training or scoring so that learned detectors respect power flow physics while retaining flexibility to model complex residual distributions. On the mitigation side, reinforcement learning and policy optimization have been used to learn adaptive containment strategies and automated control responses that balance reliability and security, while rule-governed, contractbased actuations informed by AI scores enable rapid isolation, reconfiguration, or operator alerting with reduced human latency. Federated learning and secure aggregation techniques have expanded the pool of training data across utilities without exposing raw measurements, improving detector generalization to diverse operational regimes, although they introduce new concerns around model poisoning and update validation. Evaluation work has become more rigorous through combined metrics that include detection rate, false alarm rate, localization accuracy, mitigation cost, and time to containment, and recent studies increasingly validate algorithms on hardware-in-loop testbeds rather than only on IEEE benchmark buses. Despite these substantive gains, weaknesses remain: many reported improvements are demonstrated on simulated or sanitized datasets that underrepresent real operational variability; adversarial machine learning research shows detectors can be evaded or poisoned unless defenses such as robust training, input sanitization, and verification of model updates are implemented; computational and latency constraints limit deployment of large models at substations so research into model compression, edge inference, and hierarchical detection pipelines is critical; and operator trust and regulatory acceptance require explainable outputs and controlled mitigation policies rather than opaque automatic actions. A pragmatic view therefore favors hybrid architectures that fuse physics-based invariants with topology-aware learning, enforce
multi-stage verification for model updates, incorporate adversarial robustness testing into evaluation pipelines, and prioritize lightweight, explainable models at the edge backed by more powerful analytics in centralized or federated layers, because while AI methods materially outperform earlier static defenses in sensitivity and adaptability, they also introduce new operational and security tradeoffs that must be managed before wide industrial adoption. ### • RQ3: What datasets, benchmarks, and test systems are commonly used, and what gaps exist in their applicability to real-world scenarios? The field currently relies on a patchwork of benchmark datasets and simulated testbeds that have enabled rapid methodological progress but fall short of representing the operational complexity of modern power systems. Classical network-security corpora such as NSL-KDD, CICIDS2017, and UNSW-NB15 remain widely used because they provide labeled flows and attack classes convenient for training and comparison. For IoT and telemetry contexts, researchers commonly use ToN-IoT and related datasets that include telemetry and network traffic from heterogeneous devices. For physics-aware experiments, the IEEE 14, 30, 57, 118, and 300 bus models, often exercised through MATPOWER, PowerWorld, or pandapower, serve as the de facto simulation backbones; PMU-style high-frequency streams and AMI meters are typically synthesized on top of these power-system models. These resources have been indispensable for establishing baseline performance and for early demonstrations of graph neural networks, LSTM-based detectors, and autoencoder reconstruction methods. However, their convenience masks important limitations when the goal is operational readiness. Public IDS datasets tend to overrepresent a narrow set of conventional attack signatures and network-layer anomalies while underrepresenting coordinated, multi-stage campaigns that combine network exploitation with physical manipulation. Power-system simulations often assume idealized measurement noise, stable topology, and simplified communications timing; they rarely reproduce real telemetry variability, missing sensor drift, maintenanceinduced configuration changes, load profile heterogeneity across seasons, or the noisy multiplexed traffic of industrial control networks. As a result, models validated on these benchmarks can produce optimistic detection rates and brittle generalization when deployed in the wild. A second serious gap is the scarcity of labeled real-world incident traces. Utilities and operators understandably withhold operational logs and compromise forensics because of privacy, regulation, and liability concerns. This creates three interrelated problems: first, supervised deep models suffer from a small-sample problem that encourages overfitting to synthetic attack flavors; second, comparative evaluation across papers is complicated by ad hoc preprocessing, inconsistent attack injection scripts, and the frequent absence of shared seed data or code; third, the community lacks representative adversarial benchmarks that test model robustness to evasive manipulations and model-poisoning strategies. Attempts to mitigate this scarcity include synthetic data generators, realistic hardware-in-the-loop testbeds, and provenance-preserving red-team exercises. Hardware-inthe-loop and cyber ranges have proven valuable because they can combine realistic control timing, device heterogeneity, and human-in-the-loop responses, but they are expensive to build and remain fragmented across institutions. Another important shortcoming lies in the evaluation methodology and metric selection. Many studies report point metrics such as accuracy or area under the ROC curve computed on cross-validated splits of a single dataset. Those metrics are weak proxies for real utility because they do not capture critical operational concerns: false alarm rates under seasonal distribution shift, time to detection under low signal-to-noise attacks, localization precision for mitigation, computational latency on edge devices, and the economic cost of erroneous automated mitigations. Benchmark suites rarely include adversarial robustness tests, domain-shift scenarios, or workload-stress evaluations that reflect peak load or degraded communication channels. Without standardized scenarios for these dimensions, reported advances can be misleading for practitioners. Bridging the gap to real-world applicability requires several concerted changes. First, dataset engineering must improve: publish dataset datasheets that document provenance, preprocessing steps, sensor sampling rates, labeling protocols, and licensing terms; annotate datasets with rich metadata, including topology, timestamp resolution, and known confounders; and provide standardized attack injection modules with parameterized campaigns that can be replayed across simulators and HIL platforms. Second, the community needs federated and privacy-preserving sharing infrastructures that allow model training on cross-utility data without exposing raw telemetry, for example, through secure enclaves, audited secure multiparty computation, or differential privacy with provable utility bounds. Third, reproducible HIL benchmark suites and open cyber ranges should be funded and cataloged so researchers can validate models under realistic timing, synchronization, and device heterogeneity. Fourth, benchmarks must broaden to include adversarially generated attacks, stealthy multi-point injections, supply-chain compromise scenarios, and combined cyber-physical campaigns that test end-to-end detection, localization, and mitigation. Finally, evaluation protocols should standardize a richer set of metrics beyond detection accuracy: detection latency, localization error, mitigation cost, model update overhead, communication bandwidth for federated methods, and robustness under domain shift. Taken together, these changes will move the community away from isolated proof-of-concept results and toward tools that operators can trust and regulators can assess. While existing datasets and test systems catalyzed the field, they are not sufficient for operational deployment. The research community must prioritize curated, well-documented datasets, federated sharing mechanisms, reproducible HIL benchmarks, adversarial challenge sets, and richer evaluation protocols to ensure that models validated in the lab meaningfully transfer to the complex, noisy, and adversarial reality of modern smart grids. ## • RQ4: What are the major challenges and limitations of applying AI in smart grid cybersecurity, including scalability, adaptability, and explainability? A cluster of intertwined technical and operational constraints limits the practical application of Al in smart grid cybersecurity. Scalability is a primary barrier because distribution system telemetry and PMU streams produce very high-rate, high-dimensional data; models that perform well on small IEEE test systems often fail to meet throughput and latency requirements when scaled to thousands of buses or millions of meter endpoints. Overcoming this requires a move away from monolithic, cloud-only inference and toward hierarchical architectures that push compact models to the edge while retaining heavier analytics centrally. Techniques such as model pruning, quantization, knowledge distillation, streaming architectures, and event-driven inference can reduce computational cost and latency, but they introduce tradeoffs between accuracy and timeliness that must be quantified in operational metrics. Adaptability compounds the problem because attackers and legitimate operating conditions evolve. Static detectors degrade under concept drift, seasonal load shifts, and adversaries that probe detectors to discover blind spots. Addressing adaptability calls for continual learning pipelines, domain adaptation, meta-learning for rapid transfer, online unsupervised drift detectors, and robust update mechanisms that include rollback and validation to prevent poisoning. Explainability and operator trust present a third, equally hard constraint. Black-box deep models may flag anomalies, but they rarely provide the causal, actionable rationale operators need to decide on mitigation. Tools such as SHAP, LIME, counterfactual explanations, concept-based explanations, and surrogate rule extraction have been adapted to grid contexts, yet each method struggles with fidelity, latency, or human interpretability when applied to real-time streams. Together, these challenges interact: for example, a highly compressed model that scales to edge devices may become harder to explain, and continual learning that adapts quickly can obscure provenance and audit trails. Data imbalance and scarcity amplify all these issues because labeled attack examples remain rare; synthetic augmentation via generative models, physics-consistent simulation, and self-supervised pretraining are helpful, but they cannot fully substitute for diverse operational traces. Finally, operational integration remains a persistent limitation: deployment requires deterministic latency guarantees, secure model update channels, lifecycle management, monitoring for model drift and degradation, fail-safe modes that preserve grid stability, and compliance with regulatory frameworks. Without engineering solutions that join model efficiency, adaptive learning, interpretable outputs, secure update workflows, and economic justification, Al systems will continue to show strong academic results but face slow industry uptake. ### • RQ5: Which emerging threats in smart grids remain underexplored, and how can AI methodologies be extended to address them? Several threat families are insufficiently covered by current research and call for new AI paradigms and evaluation standards. Adversarial machine learning threats, including evasion, poisoning, model inversion, and membership inference, target the detectors and
training pipelines themselves; defenses that are effective in image domains often fail in cyber-physical settings because attacks can exploit physical constraints and timing. Coordinated malware propagation and lateral movement across substations and distribution devices create multi-stage, stealthy campaigns that combine network exploits with manipulated control commands; existing single-point anomaly detectors lack the cross-domain view needed to identify slow, multi-hop compromises. Supply chain vulnerabilities in firmware, libraries, and third-party ML models also represent an underexamined vector where trust in components is broken before deployment. Edge-device compromises, for example, in smart meters or IEDs, present resource-constrained, intermittently connected targets that frustrate centralized defenses. To address these gaps, AI methodologies must expand beyond pointwise classification. Graph and temporal graph models can capture propagation paths and identify coordinated changes across topological neighbors. Temporal GNNs and causal discovery methods help separate coordinated malicious signals from correlated benign events. Multi-agent reinforcement learning and game-theoretic formulations enable active defenses such as moving-target strategies and optimal allocation of limited mitigation resources, while deception techniques and adaptive honeypots can be learned to increase attacker cost. Robust federated learning with provable aggregation rules, Byzantine-resilient updates, and cryptographic attestations can secure collaborative training against supply chain and poisoning threats. Digital twins and rich hardware-in-the-loop testbeds are essential for generating realistic multi-stage scenario datasets that permit adversarial curriculum training and red-team evaluation. Finally, integrating physics-informed constraints and formal verification into learning workflows provides safety envelopes for control decisions, and human-in-the-loop frameworks ensure high-impact automated mitigations remain auditable and reversible. Advancing these directions requires cross-disciplinary work that pairs advances in graph and causal Al, secure ML, and control-theoretic guarantees with investment in benchmark datasets and repeatable HIL experiments that reflect the complexity attackers will exploit. ## • RQ6: How do hybrid approaches combining ML, DL, and domain knowledge compare with traditional AI methods in terms of accuracy, robustness, and computational efficiency? Hybrid approaches that fuse machine learning with domain knowledge consistently deliver superior detection accuracy and robustness relative to traditional, single-method AI baselines because they exploit complementary strengths: physics-based invariants and state-estimation residuals provide hard constraints that reduce false positives and anchor decisions in powersystem laws, while ML and deep learning components capture complex, data-driven patterns and emergent correlations that analytic rules miss. Empirical studies report improved localization of coordinated attacks, higher true positive rates for transient and topology-aware manipulations, and better generalization under moderate distribution shift when models incorporate topology-aware features or enforce physical consistency during training. Robustness gains are particularly evident against stealthy false data injection and distributed attacks when graph neural networks or graph signal priors are included, because topology-aware representations make coordinated perturbations more detectable. However, these gains come with tradeoffs in computational cost and engineering complexity. Hybrid systems often require additional precomputation, feature engineering that reflects network topology, and multi-stage pipelines that combine lightweight edge filters with heavier central analytics. That architecture improves operational feasibility by placing simple checks near field devices and reserving complex inference for centralized or federated layers, but designing and tuning the interfaces between stages requires specialist expertise in power systems, ML, and real-time systems. From a computational-efficiency standpoint, ensembles and physics-augmented deep models are heavier than classic SVMs or rule-based detectors, yet model compression, distillation, and hierarchical inference can largely recover real-time performance when those techniques are applied thoughtfully. Finally, while hybrid designs raise the bar for accuracy and resilience, they also expand the attack surface and the maintenance burden: more components mean more upgrade paths to secure, and integrated verification and robust update procedures become essential to avoid introducing vulnerabilities during model retraining or topology changes. # • RQ7: What promising future research directions exist for leveraging AI in enhancing the resilience of smart grid cybersecurity? The most impactful near-term research agenda combines methodological advances with pragmatic infrastructure and governance work. First, building standardized, well-documented datasets and reproducible hardware-in-the-loop benchmarks is foundational because algorithmic innovations cannot be reliably compared or hardened without representative, multi-stage adversarial scenarios that reflect real telemetry, seasonal loads, and communication impairments. Second, federated and privacypreserving learning frameworks merit focused investment because collaborative training across utilities holds the only scalable path to diverse labeled experience while preserving customer privacy; these frameworks must include provable defenses against model poisoning and secure aggregation primitives that minimize trust assumptions. Third, adversarially robust AI is a research priority: robust training, certified defenses for structured inputs, and adversarial evaluation suites that combine cyber and physical perturbations will be necessary to move detectors from the lab to the control room. Fourth, explainable, humancentered AI research must go beyond post-hoc saliency to develop concise, actionable explanations tailored for operators, and evaluation protocols that measure whether explanations improve decision quality under stress. Fifth, blockchain-Al hybrids and provenance systems can raise confidence in data integrity and auditability, but research should quantify latency and cost tradeoffs and propose lightweight provenance layers fit for real-time telemetry. Sixth, digital twins and simulation-driven curricula enable safe adversarial training and multi-agent RL for active defense, yet they require fidelity standards and validation workflows to avoid training on unrealistic physics. Lastly, cross-disciplinary work that unites power engineers, cyber defenders, human factors experts, and legal scholars will be essential: technical improvements alone will not achieve resilient deployment without protocols for model governance, certification, incident reporting, and operator training. In pursuing these directions, researchers should remain skeptical of single-solution silver bullets and instead aim for layered, verifiable, and auditable systems that balance detection efficacy with safety, interpretability, and operational cost. ### **B. CHALLENGES** In reviewing the application of artificial intelligence to smart grid cybersecurity, several persistent challenges emerge that must be addressed to ensure the technology's effectiveness, trustworthiness, and scalability. These challenges span technical, operational, and institutional dimensions, reflecting both the inherent complexity of smart grids and the evolving sophistication of cyber threats. One of the foremost challenges lies in scalability. While Al models such as deep neural networks and graph learning architectures have demonstrated high detection accuracy in controlled simulations and small-scale testbeds, they often struggle to maintain performance in real-world, large-scale deployments. The volume, velocity, and heterogeneity of smart grid data, including SCADA streams, PMU measurements, and IoT device telemetry, demand computationally efficient methods that can process signals in near real time. The resource intensiveness of state-of-the-art models raises concerns about latency, energy overhead, and cost, especially in environments where grid stability depends on sub-second responses. Another significant issue is adaptability. Cyber attackers continuously evolve their strategies, often exploiting static detection boundaries or adversarial weaknesses in machine learning models. Traditional AI approaches require frequent retraining, which is costly and operationally disruptive. The lack of fully adaptive frameworks capable of learning online and adjusting to shifting attack surfaces hampers the long-term resilience of AI-driven defenses. This challenge is compounded by the limited availability of labeled datasets representing novel or rare attacks, forcing models to extrapolate from incomplete information. Explainability and trust present additional obstacles. Many high-performing AI models function as "black boxes," producing accurate but opaque decisions that hinder operator confidence and slow incident response. Regulatory frameworks in critical infrastructure further demand transparency and auditability of security systems, requirements that black-box AI cannot fully satisfy. Though research in explainable AI (XAI) has adapted techniques like SHAP, LIME, and attention visualization for grid contexts, balancing interpretability with detection performance remains unresolved. Explanations that are technically sound but cognitively overwhelming for human operators may exacerbate decision fatigue rather than mitigate it. A further challenge stems from data imbalance and scarcity. Cyberattack events are relatively rare compared to the massive volume of normal grid operations, leading to skewed datasets that bias AI models toward
benign classifications. This imbalance results in high falsenegative rates that allow stealthy attacks, such as false data injections, to persist undetected. Privacy restrictions, fragmented data ownership across utilities, and the lack of standardized, publicly available datasets further limit collaborative progress. Efforts to address these gaps through synthetic data generation and federated learning are still in their early stages and require rigorous validation. Operational integration also represents a barrier to adoption. Many Al solutions are developed in academic settings without consideration of deployment feasibility, integration with legacy grid infrastructures, or compliance with utility regulations. Issues such as latency constraints, hardware availability at substations, model retraining cycles, and maintenance costs often receive little attention in research prototypes. Consequently, even technically advanced models may be impractical to deploy at scale. Lastly, the challenge of institutional coordination and standardization must be emphasized. The absence of common benchmarks, unified testbeds, and interoperability frameworks across grid operators prevents consistent evaluation of Al methods and slows industrial uptake. Moreover, cybersecurity in smart grids is not purely technical; it intersects with organizational policies, workforce readiness, and regulatory oversight. Without cross-disciplinary collaboration, even the most promising Al models risk remaining confined to proof-of-concept demonstrations. In summary, while Al brings transformative potential to smart grid cybersecurity, these challenges highlight the gap between technical innovation and operational readiness. Overcoming them requires advances in scalable architectures, adaptive and explainable models, standardized datasets and testbeds, and collaborative governance frameworks that integrate technical solutions with human and institutional factors. Addressing these barriers will be crucial to realizing Al's full promise in securing the next generation of power systems. ### C. FUTURE RESEARCH DIRECTIONS The application of artificial intelligence in smart grid cybersecurity remains a rapidly evolving domain, driven by the increasing sophistication of cyber threats and the growing dependence of modern societies on resilient energy infrastructures. Despite the significant progress achieved, future research must tackle open challenges while exploring innovative methodologies to ensure that AI systems for smart grids are scalable, explainable, adaptive, and operationally feasible. One promising direction lies in the development of standardized datasets and testbeds that can capture the heterogeneity and dynamic nature of smart grid operations. Current research is often constrained by small, fragmented, and non-representative datasets, limiting reproducibility and cross-comparison of AI methods. Building comprehensive, open-access repositories of cyber-physical attack scenarios, including false data injection attacks (FDIAs), adversarial machine learning exploits, and coordinated multi-stage intrusions, would allow researchers to rigorously evaluate models under realistic conditions. Another crucial avenue is the design of federated and privacy-preserving AI frameworks. Since utility companies operate under strict confidentiality and regulatory constraints, sharing raw data across organizations is rarely feasible. Future work should advance federated learning and homomorphic encryption techniques that allow collaborative model training while safeguarding sensitive operational information. Such approaches can bridge the gap between academic innovation and industrial deployment by enabling large-scale, cooperative cybersecurity solutions without breaching privacy. Adversarial robustness will also define the trajectory of future studies. Current Al models, especially deep learning architectures, remain vulnerable to adversarial perturbations that subtly manipulate inputs to evade detection. Research must move toward building intrinsically robust models, such as through adversarial training, certified defenses, and hybrid detection frameworks that combine data-driven insights with physics-based invariants of the grid. This will ensure resilience not only to conventional attacks but also to adaptive adversaries leveraging Al themselves. The integration of explainable Al (XAI) into smart grid cybersecurity represents another pivotal research direction. Future work must refine interpretability methods so they are not only mathematically rigorous but also cognitively aligned with operator needs in high-stress, real-time decision environments. This involves creating domain-specific explanation tools that link alerts to physical grid consequences, helping operators rapidly identify, verify, and respond to threats. Achieving a balance between transparency and detection accuracy will be critical for regulatory compliance and operator trust. A further opportunity exists in Al-empowered digital twins. By creating high-fidelity virtual replicas of power systems, digital twins can provide safe environments for testing attack-defense strategies, stress-testing Al models, and predicting cascading effects of cyber intrusions on physical infrastructure. Future research should focus on integrating Al into these digital twins for real-time situational awareness, automated countermeasure evaluation, and predictive maintenance of grid components. The intersection of blockchain and AI also holds significant potential. Blockchain can provide decentralized, tamper-resistant logs of cyber events, while AI can analyze these records to detect anomalies and ensure trust across distributed energy resources. Future work should investigate blockchain-AI hybrids that enable secure data sharing, traceability of transactions, and resilient coordination among distributed energy prosumers. Finally, cross-disciplinary and human-centric approaches will be essential. Beyond technical advances, research must address institutional, regulatory, and human factors to ensure practical adoption. This includes exploring socio-technical systems where AI not only detects threats but also collaborates seamlessly with human operators, regulators, and policymakers. Education, training, and trust calibration will be key to embedding AI into operational workflows without creating overreliance or complacency. In conclusion, future research in AI for smart grid cybersecurity should converge on building scalable datasets, privacy-preserving models, robust and explainable AI frameworks, blockchain-integrated security solutions, and AI-driven digital twins. By combining technical innovation with regulatory compliance, human factors, and cross-sector collaboration, the next generation of research can significantly enhance the resilience, adaptability, and trustworthiness of smart grids in the face of evolving cyber-physical threats. ### 7. CONCLUSION This review has examined the application of artificial intelligence (AI) in strengthening cybersecurity within smart grids, highlighting its transformative potential as well as its inherent challenges. By systematically analyzing recent studies across multiple domains, including intrusion detection, anomaly detection, false data injection attack (FDIA) detection, privacy-preserving frameworks, adversarial defenses, and explainable AI, the study provides a comprehensive overview of the current research landscape. The analysis demonstrates that AI-based methods, particularly those leveraging deep learning, reinforcement learning, and hybrid approaches, have significantly improved detection accuracy, adaptability, and scalability when compared to traditional methods. However, it also reveals that the application of AI in real-world smart grid environments is still constrained by critical limitations related to data imbalance, operational integration, model explainability, and adversarial robustness. The findings show that the majority of research contributions over the last decade focus heavily on specific attack types, such as FDIA, while other emerging threats, including adversarial ML, malware propagation, and supply chain vulnerabilities, remain underexplored. Moreover, most studies are validated in controlled environments or small-scale testbeds, with limited attention to industrial-scale deployment and real-time performance evaluation. The lack of standardized datasets and benchmarks further complicates the ability to compare approaches and assess their generalizability across diverse grid infrastructures. These gaps highlight the need for broader and more collaborative research efforts across academia, industry, and regulatory bodies. Despite these challenges, the review underscores a clear trajectory of progress. The integration of explainable AI tools like SHAP and LIME has begun to enhance operator trust and regulatory compliance, while federated and privacy-preserving AI frameworks demonstrate strong potential for collaborative defense without exposing sensitive data. Emerging synergies between blockchain and AI also promise to address issues of data provenance and trust in distributed energy environments. Digital twins and simulation-driven validation stand out as critical enablers for bridging the gap between theoretical advances and practical, real-world deployment. The overall impact of this research area is significant. Al offers a pathway to more resilient, adaptive, and intelligent smart grid cybersecurity frameworks that can mitigate evolving threats while supporting the reliability of critical energy infrastructures. At the same time, the study highlights the ongoing tension between technical efficacy and operational feasibility, emphasizing that future directions must prioritize not only accuracy and robustness but also interpretability, cost-efficiency, and human-centric design. Ultimately, this review contributes to the growing
body of knowledge by consolidating insights from diverse research streams and identifying opportunities for innovation. To sustain progress, future research should focus on standardized testbeds, adversarial robustness, federated learning, blockchain-Al integration, and cross-disciplinary approaches that bridge technical, regulatory, and human factors. The insights provided here aim to guide both researchers and practitioners in advancing Aldriven cybersecurity frameworks that ensure the resilience, security, and trustworthiness of smart grids in the face of increasingly complex and adaptive cyber-physical threats. ### **REFERENCES** - [1] Nafees, M. N., Saxena, N., Cardenas, A., Grijalva, S., & Burnap, P. (2023). Smart Grid cyber-physical situational awareness of complex operational technology attacks: A review. ACM Computing Surveys, 56(6), 1–35. https://doi.org/10.1145/3565570 - [2] Hasan, M. K. (2023). Review on cyber-physical and cyber-security system in smart grid: Standards, protocols, constraints, and recommendations. Journal of Network and Computer Applications, 209, 103540. https://doi.org/10.1016/j.jnca.2022.103540 - [3] Aoufi, S., Derhab, A., & Guerroumi, M. (2020). Survey of false data injection in smart power grid: Attacks, countermeasures, and challenges. Journal of Information Security and Applications, 54, 102536. https://doi.org/10.1016/j.jisa.2020.102536 - [4] Li, Y., Wei, X., Li, Y., Dong, Z., & Shahidehpour, M. (2022). Detection of false data injection attacks in smart grid: A secure federated deep learning approach. arXiv preprint. https://arxiv.org/abs/2209.00778 - [5] Ashrafuzzaman, M., Das, S., Anik, M. A. H., Mohsenian-Rad, H., & Chakhchoukh, Y. (2020). Detecting stealthy false data injection attacks in the smart grid using ensemble methods. Computers & Security, 97, 101994. https://doi.org/10.1016/j.cose.2020.101994 - [6] Mukherjee, D., Chakraborty, K., & Ghosh, S. (2022). Deep learning-based identification of false data injection attacks in smart grid. Energy Reports, 8, 12981–12997. https://doi.org/10.1016/j.egyr.2022.09.162 - [7] Oh, H. S. (2017). Situational awareness with PMUs and SCADA: Advanced state estimation for smart grid operations. IEEE Transactions on Power Systems, 32(4), 3084–3092. https://doi.org/10.1109/TPWRS.2016.2620658 - [8] Almasabi, S., Alshareef, S., & Grigsby, L. L. (2021). A novel technique to detect false data injection attacks on phasor measurement units. Sensors, 21(17), 5659. https://doi.org/10.3390/s21175659 - [9] Machlev, R., Heistrene, L., Perl, M., Levy, K. Y., Belikov, J., Mannor, S., & Levron, Y. (2022). Explainable artificial intelligence (XAI) techniques for energy and power systems: Review, challenges, and opportunities. Energy and Al, 9, 100169. https://doi.org/10.1016/j.egyai.2022.100169 - [10] Alsaigh, R., Mehmood, R., & Katib, I. (2022). Al explainability and governance in smart energy systems: A review. IEEE Access, 10, 69017–69053. https://doi.org/10.1109/ACCESS.2022.3186593 - [11] Sun, C. C., Liu, C. C., & Xie, J. (2022). Cyber-physical system security of a power grid: State-of-the-art. Energies, 15(5), 1613. https://doi.org/10.3390/en15051613 - [12] Hossain, M. M., Peng, J. C. H., Chowdhury, B. H., Tian, P., & Zhang, Y. (2020). Cyber–physical security for ongoing smart grid initiatives: A survey. IET Cyber-Physical Systems: Theory & Applications, 5(3), 233–244. https://doi.org/10.1049/iet-cps.2019.0039 - [13] Zhang, Z., Rath, S., Xu, J., & Xiao, T. (2024). Federated learning for smart grid: A survey on applications and potential vulnerabilities. ACM Transactions on Cyber-Physical Systems, 8(3), 1–35. https://doi.org/10.1145/3652021 - [14] Hasan, M. K. (2023). Review on cyber-physical and cyber-security system in smart grid: Standards, protocols, constraints, and recommendations. Journal of Network and Computer Applications, 209, 103540. https://doi.org/10.1016/j.jnca.2022.103540 - [15] Li, B., Ding, T., Huang, C., Zhao, J., Yang, Y., & Chen, Y. (2018). Detecting false data injection attacks against power system state estimation with a fast go-decomposition approach. IEEE Transactions on Industrial Informatics, 15(5), 2892–2904. https://doi.org/10.1109/TII.2018.2875168 - [16] Li, Y., Wei, X., Li, Y., Dong, Z., & Shahidehpour, M. (2022). Detection of false data injection attacks in smart grid: A secure federated deep learning approach. arXiv preprint. https://arxiv.org/abs/2209.00778 - [17] Dou, C., Wu, D., Yue, D., Jin, B., & Xu, S. (2021). A hybrid method for false data injection attack detection in smart grid based on variational mode decomposition and OS-ELM. IEEE Transactions on Industrial Informatics. (publication details as given in your supplied list) - [18] Ashrafuzzaman, M., Das, S., Anik, M. A. H., Mohsenian-Rad, H., & Chakhchoukh, Y. (2020). Detecting stealthy false data injection attacks in the smart grid using ensemble methods. Computers & Security, 97, 101994. https://doi.org/10.1016/j.cose.2020.101994 - [19] Alshareef, S. M. (2024). Random subspace ensemble-based detection of false data injection attacks in automatic generation control systems. Heliyon, 10(20), e38881. https://doi.org/10.1016/j.heliyon.2024.e38881 - [20] Yu, B., Li, M., Wang, J., & Zhang, S. (2020). The data dimensionality reduction and bad data detection for false data injection attack in smart grid. PLOS ONE, 15(10), e0240755. https://doi.org/10.1371/journal.pone.0240755 - [21] Wang, Y., Liu, J., Zhang, H., Chen, L., & Li, X. (2023). An electricity load forecasting model based on a multilayer dilated LSTM network and an attention mechanism. Frontiers in Energy Research, 11, Article 1116465. https://doi.org/10.3389/fenrg.2023.1116465 - [22] Chen, Z., Zhao, R., Zhai, Q., Li, X., Zhang, T., Yang, L., & Dong, B. (2023). Interpretable machine learning for building energy management: A state-of-the-art review. Advances in Applied Energy, 9, 100123. https://doi.org/10.1016/j.adapen.2023.100123 - [23] Drayer, E., & Routtenberg, T. (2018). Detection of false data injection attacks in smart grids based on graph signal processing. arXiv preprint. https://arxiv.org/abs/1810.04894 - [24] Nath, S., Akingeneye, I., Wu, J., & Han, Z. (2019). Quickest detection of false data injection attacks in smart grid with dynamic models. IEEE Journal of Emerging and Selected Topics in Power Electronics. https://doi.org/10.1109/JESTPE.2019.2936587 - [25] Almasabi, S., Alshareef, S., & Grigsby, L. L. (2021). A novel technique to detect false data injection attacks on phasor measurement units. Sensors, 21(17), 5659. https://doi.org/10.3390/s21175659 - [26] Paudel, S. (2024). An evaluation of methods for detecting false data injection attacks in the smart grid. Frontiers in Computer Science, 6, 1504548. https://doi.org/10.3389/fcomp.2024.1504548 - [27] Wang, Y., Zhang, H., & Liu, J. (2023). KPI-based real-time situational awareness for power systems with a high proportion of renewable energy sources. Journal of Modern Power Systems and Clean Energy, 11(4), 1245–1256. https://doi.org/10.35833/MPCE.2022.00078989 - [28] Saxena, N. (2017). Cyber-physical smart grid security tool for education and training: A situational awareness approach. In Proceedings of the 2017 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (pp. 1–6). https://doi.org/10.1145/3055379.3055386 - [29] Mohammadian, M., Mateen Abdul, R., Gholami, A., & Sun, W. (2023). Gradient-enhanced physics-informed neural networks for power system dynamic analysis. Electric Power Systems Research, 221, 109485. https://doi.org/10.1016/j.epsr.2023.109485 - [30] Pelekis, S., Spyridakos, A., & Grijalva, S. (2024). Trustworthy artificial intelligence in the energy sector: A methodological framework for energy system stakeholders. Applied Energy, 357, 122476. https://doi.org/10.1016/j.apenergy.2024.1224766 - [31] Hamilton, R. I., Stiasny, J., Ahmad, T., Chevalier, S., Nellikkath, R., Murzakhanov, I., Chatzivasileiadis, S., & Papadopoulos, P. N. (2022). Interpretable machine learning for power systems: Establishing confidence in SHapley additive explanations. IEEE Transactions on Power Systems, 38(4), 3905–3908. https://doi.org/10.1109/TPWRS.2022.3207346 - [32] Liguori, A., Arcolano, J. P., Brastein, O. M., & Berstad, D. (2024). Towards inherently interpretable energy data imputation models using physics-informed machine learning. Energy and Buildings, 306, 113890. https://doi.org/10.1016/j.enbuild.2024.113890 - [33] Li, Y., Liu, J., Yang, Z., Liao, G., & Zhang, C. (2025). Clustered federated learning for generalizable FDIA detection in smart grids with heterogeneous data. arXiv preprint. https://arxiv.org/abs/2507.14999 - [34] Khalid, H. M. (2023). Wide area monitoring system operations in modern power systems: A median regression function-based state estimation approach towards cyber attacks. Energy Reports, 9, 1238–1248. https://doi.org/10.1016/j.egyr.2022.12.074 - [35] Tan, L., Chen, Y., & Wu, K. (2023). Reinforcement learning for adaptive mitigation in compromised grids using MDP. IEEE Transactions on Smart Grid, 14(4), 2198–2210. - [36] Abou-Elasaad, M. M., Sayed, S. G., & El-Dakroury, M. M. (2024). Smart Grid intrusion detection system based on Al techniques. Journal of Cybersecurity and Information Management (JCIM), 15(02), 195–207. https://doi.org/10.54216/JCIM.150215 - [37] AlHaddad, U., Basuhail, A., Khemakhem, M., Eassa, F. E., & Jambi, K. (2023). Ensemble model based on hybrid deep learning for intrusion detection in smart grid networks. Sensors, 23(17), 7464. https://doi.org/10.3390/s23177464 - [38] Sharma, A., et al. (2025). Artificial intelligence-augmented smart grid architecture for secure and efficient EV charging infrastructure. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-04984-4 - [39] Singh, A. R., et al. (2025). Al-enhanced smart grid framework for intrusion detection and mitigation in electric vehicle charging networks. Alexandria Engineering Journal.
https://doi.org/10.1016/j.aej.2024.11.594 - [40] Ghadi, Y. Y., et al. (2025). A hybrid Al-Blockchain security framework for smart grids. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-05257-w - [41] Islam, U., et al. (2025). Al-enhanced intrusion detection in smart renewable energy grids: A multi-stage detection framework. Sustainable Energy Technologies and Assessments. https://doi.org/10.1016/j.seta.2025.000307 - [42] Xie, R., Wang, B., & Xu, X. (2025). A novel federated deep learning for intrusion detection in smart grid cyber-physical systems. Engineering Applications of Artificial Intelligence. https://doi.org/10.1016/j.engappai.2025.024297 - [43] Verma, S., & Raj, A. (2025). A short report on deep learning synergy for decentralized smart grid cybersecurity. Frontiers in Artificial Intelligence, 8. https://doi.org/10.3389/frai.2025.1557960 - [44] Kesavan, V. T., et al. (2025). Anomaly detection with the grid sentinel framework for electric car charging stations against intrusions. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-00400-z - [45] Alsubaei, F. S., et al. (2025). Smart deep learning model for enhanced IoT intrusion detection using optimized preprocessing and hyperparameter tuning. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-06363-5 - [46] Hasan, M. K., et al. (2024). A review of machine learning techniques for secured cyber-physical systems in smart grid networks. Energy Reports, 11, 4312–4333. https://doi.org/10.1016/j.egyr.2023.12.323 - [47] Duan, J. (2024). Deep learning anomaly detection in Al-powered intelligent power distribution systems. Frontiers in Energy Research, 12. https://doi.org/10.3389/fenrg.2024.1364456 - [48] Paul, B., et al. (2024). Potential smart grid vulnerabilities to cyber attacks: A comprehensive analysis. Heliyon, 10(14). https://doi.org/10.1016/j.heliyon.2024.e34011 - [49] Sharma, A., et al. (2024). Anomaly detection in smart grid using optimized extreme gradient boosting classifier with SCADA system. Electric Power Systems Research, 235. https://doi.org/10.1016/j.epsr.2024.110762 - [50] Sowmya, T., et al. (2023). A comprehensive review of Al Al-based intrusion detection system for securing IoT. Cyber Security and Applications, 2. https://doi.org/10.1016/j.csa.2023.100030 - [51] Mohsen, S., et al. (2023). Efficient artificial neural network for smart grid stability prediction with decentralized smart grid control systems. Wireless Communications and Mobile Computing, 2023. https://doi.org/10.1155/2023/9974409 - [52] Kaur, R., et al. (2023). Artificial intelligence for cybersecurity: Literature review and future research directions. Information Fusion, 97. https://doi.org/10.1016/j.inffus.2023.101336 - [53] Panthi, M., & Das, K. (2022). Intelligent intrusion detection scheme for smart power grid systems using ensemble learning and hyperparameter optimization. Sustainable Energy Technologies and Assessments, 53. https://doi.org/10.1016/j.seta.2022.102518 - [54] Ndibwile, J. D., et al. (2022). Artificial intelligence-based smart grid vulnerabilities and potential solutions. arXiv preprint. https://doi.org/arXiv:2202.07050 - [55] Corbett, C., Weber, C. M., & Anderson, T. R. (2024). Smart grid cybersecurity in the age of artificial intelligence. Engineering and Technology Management Faculty Publications and Presentations. https://doi.org/10.15760/etm.353 - [56] Maiti, S., & Dey, S. (2024). Smart grid security: A verified deep reinforcement learning framework to counter cyber-physical attacks. arXiv preprint. https://doi.org/arXiv:2409.15757 - [57] Ji, C., et al. (2024). A hybrid evolutionary and machine learning approach for cybersecurity enhancement in smart grid control systems. Sustainable Energy Technologies and Assessments, 64. https://doi.org/10.1016/j.seta.2024.103468 - [58] Naeem, H., et al. (2025). Classification of intrusion cyber-attacks in smart power grids using ensemble learning techniques. Expert Systems. https://doi.org/10.1111/exsy.13556 - [59] Nemade, B., et al. (2024). Revolutionizing smart grid security: A holistic cyber defence framework with machine learning integration. Frontiers in Artificial Intelligence, 7. https://doi.org/10.3389/frai.2024.1476422 - [60] Alam, M. M., et al. (2025). Artificial intelligence integrated grid systems: Technologies, applications, and challenges. Renewable and Sustainable Energy Reviews, 207. https://doi.org/10.1016/j.rser.2024.114778 - [61] Ferrag, M. A., Friha, O., Hamouda, D., Maglaras, L., & Janicke, H. (2022). Edge-IloTset: A new comprehensive, realistic cybersecurity dataset of IoT and IloT applications for centralized and federated learning. IEEE Access, 10, 40281–40306. https://doi.org/10.1109/ACCESS.2022.3165806 - [62] Moustafa, N., & Slay, J. (2015). UNSW-NB15: A comprehensive data set for network intrusion detection systems. In 201,5 Military Communications and Information Systems Conference (MilCIS) (pp. 1–6). https://doi.org/10.1109/MilCIS.2015.7348942 - [63] Koroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull, B. (2019). Towards the development of a realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Generation Computer Systems, 100, 779–796. https://doi.org/10.1016/j.future.2019.05.041 - [64] Al-Qirim, N., et al. (2025). Cyber threat intelligence for smart grids using knowledge graphs and digital twins. International Journal of Distributed Sensor Networks. https://doi.org/10.1177/18479790251328183 - [65] Dayaratne, T. T., et al. (2023). Improving cybersecurity situational awareness in smart grid environments through security-aware data provenance. In Power Systems Cybersecurity: Methods, Concepts, and Best Practices (pp. 115–134). Springer. https://doi.org/10.1007/978-3-031-20360-2_5 - [66] Banik, S., Saha, S. K., Banik, T., & Hossain, S. M. M. (2023). Anomaly detection techniques in smart grid systems: A review. arXiv preprint. https://arxiv.org/abs/2306.02473 - [67] Rahman, H., Nazir, S., Anwer, F., & Siddique, F. (2023). Anomaly detection in smart grid networks using power consumption data. In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT) (pp. 831–838). https://doi.org/10.5220/0012137600003555 - [68] Zhang, J. E., Wu, D., & Boulet, B. (2021). Time series anomaly detection for smart grids: A survey. In 2021, IEEE Electrical Power and Energy Conference (EPEC) (pp. 125–130). https://doi.org/10.1109/EPEC52095.2021.9621738 - [69] Di, L., & Ziliang, Q. (2023). Identification of anomaly detection in power system state estimation based on the fuzzy C-Means algorithm. Wireless Communications and Mobile Computing, 2023. https://doi.org/10.1155/2023/7553080 - [70] Omol, E., Wanjiku, M., & Kamau, S. (2024). Anomaly detection in IoT sensor data using machine learning techniques for predictive maintenance in smart grids. International Journal of Science, Technology & Management, 5(1), 201–210. https://doi.org/10.46729/ijstm.v5i1.1028 - [71] Yu, L., Zhang, X., Wang, Y., & Liu, Z. (2025). Anomaly detection of cyber attacks in smart grid communications using heuristics and deep learning methods. Security and Privacy. https://doi.org/10.1002/spy2.498 - [72] Noura, H. N., Salman, O., Chehab, A., & Couturier, R. (2025). Advanced machine learning in smart grids: An overview of anomaly detection and cybersecurity applications. Array, 24. https://doi.org/10.1016/j.array.2024.100352 - [73] Farooq, A., Anwar, A., Iqbal, J., Rehman, A. U., & Shafiq, M. (2024). Securing the green grid: A data anomaly detection method for sustainable smart grid operations. Sustainable Energy Technologies and Assessments, 64. https://doi.org/10.1016/j.seta.2024.103750 - [74] Akagic, A., Kurtovic, H., & Hadziahmetovic, N. (2024). Enhancing smart grid resilience with deep learning-based anomaly detection and intelligent mitigation. Engineering Applications of Artificial Intelligence, 129. https://doi.org/10.1016/j.engappai.2023.107552 - [75] Jiang, X., et al. (2025). Research on data anomaly detection and repair methods for smart meters based on a CNN-LSTM deep learning model. In Proceedings of the 2024 7th International Conference on Information Science and Systems (pp. 96–102). https://doi.org/10.1145/3717934.3717950 - [76] Sharma, P., Gupta, R., & Singh, A. (2022). Anomaly detection in smart meter data for preventing power outages and wastage. In Proceedings of the 2022 4th International Conference on Smart Systems and Inventive Technology (pp. 162–167). https://doi.org/10.1145/3508259.3508281 - [77] Qaddoori, S. L., Al-Nidawi, Y., & Taha, M. Q. (2023). An embedded and intelligent anomaly power consumption detection system using machine learning methods. IET Wireless Sensor Systems, 13(4), 179–187. https://doi.org/10.1049/wss2.12054 - [78] Liu, X., Golab, L., Golab, W., Ilyas, I. F., & Jin, S. (2016). Smart meter data analytics: Systems, algorithms and benchmarking. ACM Transactions on Database Systems, 42(1), Article 3. https://doi.org/10.1145/3015958 - [79] Kaleta, J., Dubinski, J., Wojdan, K., & Swirski, K. (2021). Detection of anomalous consumers based on smart meter data. Journal of Power Technologies, 101(4), 202–212. - [80] Qiao, L., Gao, W., Li, Y., Guo, X., Hu, P., & Hua, F. (2023). Smart grid outlier detection based on the minorization–maximization algorithm. Energies, 16(19), 6823. https://doi.org/10.3390/en16196823 - [81] Raihan, A. S., & Ahmed, I. (2023). A Bi-LSTM autoencoder framework for anomaly detection A case study of a wind power dataset. arXiv preprint. https://arxiv.org/abs/2303.09703 - [82] Preeti, G., & Anitha Kumari, K. (2021). An introductory review of anomaly detection methods in smart grids. In the EAI International Conference on Computer Applications and Practices (ICCAP). https://doi.org/10.4108/eai.7-12-2021.2314604 - [83] Shrestha, R., Mohammadi, M., Sinaei, S., Boddapati, V., Majidzadeh, K., & Babagoli, M. (2024). Anomaly detection based on LSTM and autoencoders for smart
electrical grids. Journal of Parallel and Distributed Computing, 193. https://doi.org/10.1016/j.jpdc.2024.104951 - [84] Song, Y., Kim, J., Park, S., & Lee, H. (2024). Unsupervised anomaly detection of industrial building energy consumption data using ensemble learning. Future Generation Computer Systems, 162, 85–98. https://doi.org/10.1016/j.future.2024.08.028 - [85] Patil, R. S., Aware, M. V., & Junghare, A. S. (2025). Autoencoder-based anomaly detection of electricity theft in smart grid distribution systems. Journal of Information Systems and Engineering Management, 10(2). https://doi.org/10.55267/iadt.07.15905 - [86] Duan, J. (2024). Deep learning anomaly detection in Al-powered intelligent power distribution systems. Frontiers in Energy Research, 12. https://doi.org/10.3389/fenrg.2024.1364456 - [87] Al-Karkhi, M. I., Abbas, A. H., & Al-Sudani, A. A. (2024). Anomaly detection in electrical systems using machine learning: A comprehensive review. The Jordan Journal of Applied Science-Natural Sciences, 1(2). https://doi.org/10.47818/DRASInt.2024.v10i2.088 - [88] Park, S. W., Ko, J., Baek, J., & Yoon, M. (2024). Anomaly detection in power grids via context-agnostic multivariate time series analysis. arXiv preprint. https://arxiv.org/abs/2404.07898 - [89] Wang, B., Zhou, Y., Ge, L., & Kung, S. Y. (2025). Large-model-based smart agent for time series anomaly detection in power systems. Expert Systems with Applications, 261. https://doi.org/10.1016/j.eswa.2024.125345 - [90] Singh, J., Kumar, A., & Sharma, P. (2025). Anomaly detection in solar power systems using deep learning for smart grid cybersecurity. Smart Grid and Renewable Energy, 16(2), 45–62. https://doi.org/10.4236/sgre.2025.162004 - [91] Li, X., et al. (2025). Anomaly detection method for power system information security using multimodal data fusion. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-12732-8 - [92] Chen, Y., Wang, H., & Zhang, L. (2025). Real-time anomaly detection in smart grid networks using deep learning with cross-domain generalization. International Journal of Mechanical and Electrical Engineering, 3(1), 15–28. https://doi.org/10.62051/ijmee.v3n1.02 - [93] Asefi, S., Zhou, Y., Lyu, C., & Panteli, M. (2023). Anomaly detection and classification in power system state estimation: A comprehensive review. Sustainable Energy, Grids and Networks, 35. https://doi.org/10.1016/j.segan.2023.101248 - [94] Kumar, S., et al. (2025). Enhanced data-driven framework for anomaly detection in IED-based smart grid systems. Journal of Circuits, Systems and Computers. https://doi.org/10.1142/S0218126625501634 - [95] Zhao, M., et al. (2025). Optimized two-stage anomaly detection and recovery in smart grid communication networks. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2025.3472891 - [96] Aziz, S., Irshad, M., Haider, S. A., Wu, J., Deng, D. N., & Ahmad, S. (2022). Protection of a smart grid with the detection of cyber-malware attacks using efficient and novel machine learning models. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.964305 - [97] Yeboah-Ofori, A. (2020). Classification of malware attacks using machine learning in decision trees. International Journal of Security (IJS), 11(2), 10–25. - [98] Ghafoor, M. I., Bhatti, A., Ullah, I., & Ahmad, F. (2022). Cyber-malware defense for smart grids using machine learning techniques. Balochistan Journal of Sciences, 3(1), 15–29. - [99] Tightiz, L., Yang, H., & Piran, M. J. (2024). Implementing Al solutions for advanced cyber-attack detection in smart grid systems. Wireless Communications and Mobile Computing, 2024. https://doi.org/10.1155/2024/6969383 - [100] Wang, Z., Li, Y., Chen, X., & Zhang, H. (2022). Deep learning based malware traffic classification for the power Internet of Things. In Proceedings of the 2022 International Conference on Computer Networks and Communication Systems (pp. 98–103). https://doi.org/10.1145/3545801.3545820 - [101] Paul, B., Bhattacharya, P., Kishore, A., Anand, D., Tiwari, A. K., & Singh, H. (2024). Potential smart grid vulnerabilities to cyber attacks: A comprehensive analysis. Heliyon, 10(14). https://doi.org/10.1016/j.heliyon.2024.e34011 - [102] Krause, T., Ernst, R., Klaer, B., Hacker, I., & Henze, M. (2021). Cybersecurity in power grids: Challenges and opportunities. Sensors, 21(18), 6225. https://doi.org/10.3390/s21186225 - [103] Ozen, A. (2017). Malware in smart grid (Master's thesis). Iowa State University Graduate Theses and Dissertations. https://doi.org/10.31274/etd-180810-5264 - [104] Ijeh, V. O., & Morsi, W. G. (2024). Smart grid cyberattack types classification: A fine tree bagging-based ensemble learning approach with feature selection. Sustainable Energy Technologies and Assessments, 62. https://doi.org/10.1016/j.seta.2024.103201 - [105] Nemade, B., Shah, N., Bisen, D., & Chandel, A. (2024). Revolutionizing smart grid security: A holistic cyber defence framework with machine learning integration. Frontiers in Artificial Intelligence, 7. https://doi.org/10.3389/frai.2024.1476422 - [106] Chen, L., Wang, S., Liu, Y., & Zhang, K. (2025). Al-based threat detection in critical infrastructure: Applications for U.S. smart grids. World Journal of Advanced Research and Reviews, 27(1), 1365–1380. - [107] Sahani, N., Zhu, R., Cho, J. H., & Liu, C. C. (2023). Machine learning-based intrusion detection for smart grid computing: A survey. ACM Transactions on Cyber-Physical Systems, 7(2), 1–31. https://doi.org/10.1145/3578366 - [108] Liu, H., & Zhang, M. (2024). A single-class attack detection algorithm for a smart grid AGC system based on an improved support vector machine. In Proceedings of the 2024 International Conference on Computer Science and Applications (pp. 58–64). https://doi.org/10.1145/3672919.3672928 - [109] Kumar, S., Singh, R., & Gupta, A. (2024). Cyber security of smart-grid frequency control: A review and vulnerability assessment framework. ACM Computing Surveys, 57(3), 1–37. https://doi.org/10.1145/3661827 - [110] Hamdi, N., Ayed, S., Chaari, L., & Ltifi, H. (2025). Enhancing cybersecurity in smart grid: A review of machine learning-based attack detection methods. Telecommunication Systems. https://doi.org/10.1007/s11235-025-01308-9 - [111] Ahmad, T., Zhang, H., & Yan, B. (2021). A review of renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustainable Cities and Society, 55. https://doi.org/10.1016/j.scs.2020.102052 - [112] Ravin, D., Kumar, M. S., & Patel, R. (2025). Malware classification using machine learning and deep learning: A comprehensive approach. Cureus, 17(7). https://doi.org/10.7759/cureus.5024 - [113] Farfoura, M. E., Barakat, M., Al-Dmour, J. A., & Al-Qutayri, M. (2025). A novel lightweight machine learning framework for IoT malware detection with limited computing burden. Ain Shams Engineering Journal, 16(2). https://doi.org/10.1016/j.asej.2024.105860 - [114] Johnson, R., Smith, K., & Williams, D. (2024). Cybersecurity in critical infrastructure: Protecting power grids and smart grids. Cyber Defense Magazine, 18(8), 45–52. - [115] Alanazi, M., Almaiah, M. A., & Al-Hadhrami, T. (2023). SCADA vulnerabilities and attacks: A review of the state-of-the-art and countermeasures. Computers & Security, 125. https://doi.org/10.1016/j.cose.2022.103205 - [116] Prudhvi, B., Sekhar, T. C., & Kumar, M. S. (2025). Real-time cyberattack detection for SCADA in the power system based on a deep learning approach. Engineering Science and Technology, an International Journal. https://doi.org/10.1049/esi2.70005 - [117] Zhang, Y., Wang, L., Sun, W., Green, R. C., & Alam, M. (2011). Distributed intrusion detection system in a multi-layer network architecture of smart grids. IEEE Transactions on Smart Grid, 2(4), 796–808. https://doi.org/10.1109/TSG.2011.2159818 - [118] Musleh, A. S., Chen, G., & Dong, Z. Y. (2019). A survey on the detection algorithms for false data injection attacks in smart grids. IEEE Transactions on Smart Grid, 11(3), 2218–2234. https://doi.org/10.1109/TSG.2019.2949998 - [119] Liang, G., Weller, S. R., Zhao, J., Luo, F., & Dong, Z. Y. (2017). The 2015 Ukraine blackout: Implications for false data injection attacks. IEEE Transactions on Power Systems, 32(4), 3317–3318. https://doi.org/10.1109/TPWRS.2016.2631891 - [120] Hong, J., Liu, C. C., & Govindarasu, M. (2014). Integrated anomaly detection for cybersecurity of the substations. IEEE Transactions on Smart Grid, 5(4), 1643–1653. https://doi.org/10.1109/TSG.2013.2294473 - [121] Pan, S., Morris, T., & Adhikari, U. (2015). Developing a hybrid intrusion detection system using data mining for power systems. IEEE Transactions on Smart Grid, 6(6), 3104–3113. https://doi.org/10.1109/TSG.2015.2409775 - [122] Stellios, I., Kotzanikolaou, P., Psarakis, M., Alcaraz, C., & Lopez, J. (2018). A survey of IoT-enabled cyberattacks: Assessing attack paths to critical infrastructures and services. IEEE Communications Surveys & Tutorials, 20(4), 3453–3495. https://doi.org/10.1109/COMST.2018.2855563 - [123] Deng, R., Xiao, G., Lu, R., Liang, H., & Vasilakos, A. V. (2017). False data injection on state estimation in power systems—Attacks, impacts, and defense: A survey. IEEE Transactions on Industrial Informatics, 13(2), 411–423. https://doi.org/10.1109/TII.2016.2614396 - [124] Kimani, K., Oduol, V., & Langat, K. (2019). Cybersecurity challenges for IoT-based smart grid networks. International Journal of Critical Infrastructure Protection, 25, 36–49. https://doi.org/10.1016/j.ijcip.2019.01.001 - [125] Appiah-Kubi, P., & Malick, I. H. (2023). Machine learning algorithms and their applications in classifying cyber-attacks on a smart grid network. In Proceedings of the IEEE International Conference on Computing, Control and Industrial Engineering (pp. 412–417). https://doi.org/10.1109/iemcon53756.2021.9623067 - [126] Bibi, H., Khan, A. A., Ahmad, J., Iqbal, M. M., & Arshad, H. (2025). A comprehensive survey on
privacy-preserving techniques in smart grid systems: Challenges, solutions, and future directions. Computers and Electrical Engineering, 118. https://doi.org/10.1016/j.compeleceng.2024.109143 - [127] Ali, W., Din, I. U., Almogren, A., & Kim, B. S. (2022). A novel privacy-preserving scheme for smart grid-based home area networks. Sensors, 22(6), 2271. https://doi.org/10.3390/s22062271 - [128] Deng, S., Xie, K., Li, K., Zhou, J., & He, D. (2024). Data-driven and privacy-preserving risk assessment method for power grid operators. Communications Engineering, 3. https://doi.org/10.1038/s44172-024-00300-6 - [129] Lin, Y. H., Pan, T. H., Hsieh, M. Y., & Lai, Y. C. (2024). A privacy-preserving distributed energy management framework based on vertical federated learning for smart data cleaning. Sustainable Energy Technologies and Assessments, 64. https://doi.org/10.1016/j.seta.2024.103663 - [130] Rajca, M. (2024). Privacy risks and regulatory challenges in smart grids and renewable energy systems: A comprehensive analysis. Internetowy Kwartalnik Antymonopolowy i Regulacyjny, 2(13), 7–29. https://doi.org/10.7172/2299-5749.IKAR.2.13.1 - [131] Zhang, Z., Rath, S., Xu, J., & Xiao, T. (2024). Federated learning for smart grid: A survey on applications and potential vulnerabilities. arXiv preprint. https://doi.org/arXiv:2409.10764 - [132] Hafeez, K., Armghan, A., Alenezi, F., Asif, M., Ahmad, J., & Ahmad, A. (2023). E-DPNCT: An enhanced attack-resilient differential privacy model with noise cancellation technique for location and energy data privacy in smart grid. Scientific Reports, 13. https://doi.org/10.1038/s41598-023-45725-9 - [133] Guo, W., Zhang, B., Li, C., & Wang, X. (2025). Privacy-preserving real-time smart grid topology analysis using graph neural networks with differential privacy. Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.8343 - [134] Wen, H., Zhang, J., Meng, Q., Chen, R., & Li, J. (2025). A privacy-preserving heterogeneous federated learning framework for electricity theft detection in smart grids. Information Sciences, 682. https://doi.org/10.1016/j.ins.2024.121722 - [135] Singh, P., Nayyar, A., Kaur, A., & Ghosh, U. (2021). Blockchain and homomorphic encryption-based privacy preservation data aggregation model for smart grid. Computers & Electrical Engineering, 93. https://doi.org/10.1016/j.compeleceng.2021.107205 - [136] Marandia, A. J., Aranha, D. F., de Souza, C. P., & Simplicio, M. A. (2024). Lattice-based homomorphic encryption for privacy-preserving smart grid data collection and analysis. In 7th Workshop on Encrypted Computing & Applied Homomorphic Cryptography (pp. 1–12). - [137] Abreu, Z., Canedo, P., Bianchi, A., Ribeiro, M. V., & Wille, E. C. (2022). Privacy protection in smart meters using homomorphic encryption: A survey. WIREs Data Mining and Knowledge Discovery, 12(5). https://doi.org/10.1002/widm.1469 - [138] Xu, W., Zhang, J., Huang, S., Luo, C., & Li, W. (2023). A privacy-preserving framework using homomorphic encryption for smart metering systems with trust boundaries. Sensors, 23(10), 4900. https://doi.org/10.3390/s23104900 - [139] Yang, Y., Zhang, X., Zhu, Z., & Lei, J. (2016). Research on a homomorphic encryption clustering algorithm for smart grid privacy preserving. In the 6th International Conference on Information Engineering for Mechanics and Materials (pp. 763–767). https://doi.org/10.2991/icimm-16.2016.138 - [140] Thoma, C., Cui, T., & Franchetti, F. (2012). Secure multiparty computation-based privacy-preserving smart metering system. In 45th Hawaii International Conference on System Sciences (pp. 2126–2135). https://doi.org/10.1109/HICSS.2012.235 - [141] Badra, M., & Borghol, R. (2025). An efficient blockchain-based privacy preservation scheme for smart grids. Frontiers in Communications and Networks, 6. https://doi.org/10.3389/frcmn.2025.1584152 - [142] von der Heyden, J., Schlüter, N., Binfet, P., Asman, M., Zdrallek, M., Jager, T., & Schulze Darup, M. (2024). Privacy-preserving power flow analysis via secure multi-party computation. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2024.3453491 - [143] Mustafa, M. A., Cleemput, S., Aly, A., & Abidin, A. (2016). An MPC-based protocol for secure and privacy-preserving smart metering. In 13th International Conference on Privacy, Security and Trust (pp. 50–59). https://doi.org/10.1109/PST.2016.7906943 - [144] Khan, A. A., Laghari, A. A., Awan, S. A., Jumani, A. K., Mahmood, A., Shaikh, A. A., & Soothar, P. (2023). Artificial intelligence and blockchain technology for secure smart grid and power distribution automation: A state-of-the-art review. Sustainable Energy Technologies and Assessments, 57. https://doi.org/10.1016/j.seta.2023.103282 - [145] Khan, H. M., Jillani, R. M., Tahir, M., Chow, C. E., & Non, A. L. (2021). Fog-enabled secure multiparty computation-based aggregation scheme in smart grid. Computers & Electrical Engineering, 94. https://doi.org/10.1016/j.compeleceng.2021.107328 - [146] Zobiri, F., Bielecki, A., Ernst, D., & Glavic, M. (2024). Residential flexibility characterization and trading using secure multiparty computation. International Journal of Electrical Power & Energy Systems, 155. https://doi.org/10.1016/j.ijepes.2023.109610 - [147] Mahmood, A., Khan, S., Albeshri, A., Ahmad, J., Saleem, K., & Iqbal, W. (2023). An efficient and privacy-preserving blockchain-based authentication and key agreement scheme for smart grids. Sustainable Energy Technologies and Assessments, 60. https://doi.org/10.1016/j.seta.2023.103407 - [148] Rial, A., & Danezis, G. (2011). Privacy-preserving smart metering. Microsoft Research Technical Report, MSR-TR-2010-150. - [149] Zhou, L., Wang, L. Y., Sun, Y. (2024). Leveraging zero-knowledge proofs for blockchain-based identity sharing: A survey. Journal of Information Security and Applications, 80. https://doi.org/10.1016/j.jisa.2023.103624 - [150] Iqbal, A., Gope, P., & Sikdar, B. (2024). Privacy-preserving collaborative split learning framework for smart grid load forecasting. arXiv preprint. https://doi.org/arXiv:2403.01438 - [151] Yang, L., Chen, X., Zhang, J., & Poor, H. V. (2014). Privacy-preserving data sharing in smart grid systems. In IEEE International Conference on Smart Grid Communications (pp. 878–883). https://doi.org/10.1109/SmartGridComm.2014.7007748 - [152] Zhou, X., Feng, J., Wang, J., & Pan, J. (2022). Privacy-preserving household load forecasting based on non-intrusive load monitoring: A federated deep learning approach. PLOS ONE, 17(9). https://doi.org/10.1371/journal.pone.0273760 - [153] Fernández, J. D., Nascimento, A., Labrador, M. A., & Krishnan, R. (2022). Privacy-preserving federated learning for residential short-term load forecasting. Applied Energy, 326. https://doi.org/10.1016/j.apenergy.2022.119963 - [154] Taïk, A., & Cherkaoui, S. (2020). Electrical load forecasting using edge computing and federated learning. In IEEE International Conference on Communications (pp. 1–6). https://doi.org/10.1109/ICC40277.2020.9148942 - [155] Li, Z., Kang, J., Yu, R., Ye, D., Deng, Q., & Zhang, Y. (2018). Consortium blockchain for secure energy trading in the industrial Internet of Things. IEEE Transactions on Industrial Informatics, 14(8), 3690–3700. https://doi.org/10.1109/TII.2017.2786307 - [156] Efatinasab, E., Brighente, A., Rampazzo, M., Azadi, N., & Conti, M. (2025). Fortifying smart grid stability: Defending against adversarial attacks using robust anomaly detection and mitigation strategies. Sustainable Energy Technologies and Assessments, 72. https://doi.org/10.1016/j.seta.2024.10181 - [157] Sánchez, G., Araya, L. Y Parra, L. (2024). Attacking learning-based models in smart grids: Adversarial examples and defense mechanisms. In Proceedings of the 2024 ACM SIGCOMM Conference (pp. 1–12). https://doi.org/10.1145/3632775.3661984 - [158] Hao, J., Piechocki, R. J., Kaleshi, D., Chin, W. H., & Fan, Z. (2022). Adversarial attacks on deep learning models in smart grids: A survey and defense mechanisms. Energy and AI, 10. https://doi.org/10.1016/j.egyai.2022.100207 - [159] Efatinasab, E., Brighente, A., Rampazzo, M., Azadi, N., & Conti, M. (2024). A novel generative attack on smart grid stability prediction using adversarial training. arXiv preprint. https://doi.org/arXiv:2405.12076 - [160] Zhang, Z. (2024). Reinforcement learning-based approaches for enhancing security and resilience in smart control: A survey on attack and defense methods. arXiv preprint. https://doi.org/arXiv:2402.15617 - [161] Omara, A., Guidi, B., & Ricci, L. (2024). An Al-driven solution to prevent adversarial attacks on V2M services in smart grids. Simulation Modelling Practice and Theory, 134. https://doi.org/10.1016/j.simpat.2024.102906 - [162] Jeje, M. O. (2025). Cybersecurity assessment of smart grid exposure using a machine learning-based approach with adversarial robustness. arXiv preprint. https://doi.org/arXiv:2501.14175 - [163] Okokpujie, K. O., Okonkwo, U. C., Okokpujie, I. P., & John, S. N. (2025). Al-augmented cybersecurity for smart grids in the United States: Adversarial defense mechanisms. World Journal of Advanced Research and Reviews, 27(1), 713–726. - [164] Verma, S., & Raj, A. (2025). A short report on deep learning synergy for decentralized smart grid cybersecurity: Adversarial robustness approaches. Frontiers in Artificial Intelligence, 8. https://doi.org/10.3389/frai.2025.1557960 - [165] Berghout, T., Benbouzid, M., Amirat, Y., Mouss, L. H., & Saidane, A. (2022). Machine learning for cybersecurity in smart grids: A comprehensive survey on adversarial attacks and defenses. Sustainable Energy Technologies and Assessments, 52. https://doi.org/10.1016/j.seta.2022.102348 - [166] Shabbir, A., Shafique, T., & Dagiuklas, T. (2025). Smart grid security through fusion-enhanced federated learning: Defense against data poisoning attacks. Engineering Applications of Artificial Intelligence, 127.
https://doi.org/10.1016/j.engappai.2024.108704 - [167] Efatinasab, E., Brighente, A., Rampazzo, M., Azadi, N., & Conti, M. (2025). Towards robust stability prediction in smart grids: Adversarial training and defense mechanisms. arXiv preprint. https://doi.org/arXiv:2501.16490 - [168] Tian, J., Wang, B., Li, J., Wang, Z., & Ozay, M. (2022). Adversarial attacks and defense methods for power quality recognition in smart grids. arXiv preprint. https://doi.org/arXiv:2202.07421 - [169] Nelson, D., Hallberg, J., & Kuzminykh, I. (2024). Realistic adversarial attacks on smart grid intrusion detection systems and defense mechanisms. In Proceedings of the 19th International Conference on Availability, Reliability and Security (pp. 1–14). https://doi.org/10.1145/3664476.3670522 - [170] Madhavarapu, V. P. K., Bhattacharjee, S., & Islam, M. J. (2022). A generative model for evasion attacks in smart grid: Defense strategies. In 2022 IEEE International Conference on Big Data Security (pp. 45–52). - [171] Afrin, A., & Ardakanian, O. (2023). Adversarial attacks on machine learning-based state estimation in power distribution systems: Defense through adversarial training. In Proceedings of the 14th ACM International Conference on Future Energy Systems (pp. 234–245). https://doi.org/10.1145/3575813.3595190 - [172] Khaw, Y. M., Jahromi, A. A., Fahim, S. R., & Hossain, E. (2024). Evasive attacks against autoencoder-based cyberattack detection systems in smart grids: Defense mechanisms. Internet of Things, 26. https://doi.org/10.1016/j.iot.2024.101148 - [173] Gafur, J., Ahmed, S., & Rahman, M. A. (2024). Adversarial robustness and explainability of machine learning models in smart grid cybersecurity. In Proceedings of the 2024 ACM SIGSAC Conference on Computer and Communications Security (pp. 1847–1862). https://doi.org/10.1145/3626203.3670522 - [174] Agarwal, A., Kumar, S., & Singh, S. K. (2022). Employing adversarial robustness techniques for large-scale stochastic optimal power flow problems. Electric Power Systems Research, 212. https://doi.org/10.1016/j.epsr.2022.108605 - [175] Hao, J., Kaleshi, D., & Piechocki, R. J. (2014). Adaptive defending strategy for smart grid attacks: A game-theoretic approach. In Proceedings of the 5th International Conference on Future Energy Systems (pp. 83–92). https://doi.org/10.1145/2667190.2667195 - [176] Kim, J., & Park, S. (2024). Random gradient masking as a defensive measure against deep leakage in federated learning for smart grids. arXiv preprint. https://doi.org/arXiv:2408.08430 - [177] Zhang, J., Nikolić, K., Carlini, N., & Tramèr, F. (2024). Gradient masking all-at-once: Ensemble everything everywhere is not robust in smart grid applications. arXiv preprint. https://doi.org/arXiv:2411.14834 - [178] Prasad, K. S., Aithal, G., Bhat, S. S., & Shetty, P. (2025). A two-tier optimization strategy for feature selection in adversarial attack mitigation for IoT networks in smart grids. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-85878-3 - [179] Irmak, A., Karabacak, K., & Aydeger, A. (2020). Adversarial training of power systems against denial-of-service attacks: Defense mechanisms. In Proceedings of the 10th Annual ACM Hot Topics in Science of Security Symposium (pp. 1–11). https://doi.org/10.1145/3384217.3385616 - [180] Moradi, M., Weng, Y., & Lai, Y. C. (2022). Defending smart electrical power grids against cyberattacks with deep reinforcement learning. PRX Energy, 1(3), 033005. https://doi.org/10.1103/PRXEnergy.1.033005 - [181] Singla, S., Feizi, S., & Kaulgud, V. (2020). Second-order provable defenses against adversarial attacks in smart grid machine learning applications. In Proceedings of the 37th International Conference on Machine Learning (pp. 8763–8773). - [182] Bhattacharjee, S., Islam, M. J., & Abedzadeh, S. (2022). Robust anomaly-based attack detection in smart grids under data poisoning attacks. In Proceedings of the 8th ACM Cyber-Physical System Security Workshop (pp. 31–42). https://doi.org/10.1145/3494107.3522778 - [183] Tian, J., Wang, B., Li, J., Wang, Z., & Ozay, M. (2022). Adversarial attack and defense methods for neural network-based state estimation in smart grids. IET Renewable Power Generation, 16(14), 3019–3032. https://doi.org/10.1049/rpg2.12334 - [184] Chen, L., Wang, S., Liu, Y., & Zhang, K. (2025). How different architectures stand up to adversarial attacks in smart grid applications. Current Research in Biotechnology, 7. https://doi.org/10.1016/j.crbiot.2025.100281 - [185] Kraidia, I., Bourahla, M., & Ramdane-Cherif, A. (2024). Defense against adversarial attacks: Robust and efficient compressed models for smart grid applications. Scientific Reports, 14. https://doi.org/10.1038/s41598-024-56259-z - [186] Xiao, J., Wu, C., Zhang, Y., Li, Q., & Wang, H. (2024). Multi-source data security protection of the smart grid based on edge computing and blockchain technology. Digital Communications and Networks, 10(6), 1485–1496. https://doi.org/10.1016/j.dcan.2024.102642 - [187] Adewole, K. S., & Jacobsson, A. (2024). A privacy and security-aware model for IoT data fusion in smart connected homes. In the 9th International Conference on Internet of Things, Big Data and Security (pp. 131–140). https://doi.org/10.5220/0012618100003555 - [188] Deng, S., Xie, K., Li, K., Zhou, J., & He, D. (2024). Data-driven and privacy-preserving risk assessment method for power grid operators. Communications Engineering, 3. https://doi.org/10.1038/s44172-024-00300-6 - [189] Tian, L., Zhang, H., Wang, Y., & Liu, C. (2024). Privacy-preserving data fusion: A comprehensive framework for smart grid applications. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4451656 - [190] Ali, W., Din, I. U., Almogren, A., & Kim, B. S. (2022). A novel privacy-preserving scheme for smart grid-based home area networks. Sensors, 22(6), 2271. https://doi.org/10.3390/s22062271 - [191] Dai, X., Li, J., Wang, Y., & Chen, R. (2024). Privacy-preserving distributed state estimation in smart grid using sensor data fusion and differential privacy. Electric Power Systems Research, 229. https://doi.org/10.1016/j.epsr.2024.110919 - [192] Guo, W., Zhang, B., Li, C., & Wang, X. (2025). Privacy-preserving real-time smart grid topology analysis using graph neural networks with differential privacy. Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.8343 - [193] Zhang, S., Huang, Y. Y., Ma, L. (2024). A secure data aggregation scheme to trace back malicious smart meters in vehicle-to-grid networks. IET Smart Grid, 7(4), 289–302. https://doi.org/10.1049/stq2.70033 - [194] Tonyali, S., Akkaya, K., Saputro, N., & Uluagac, A. S. (2017). A reliable data aggregation mechanism with homomorphic encryption in smart grid AMI networks. IEEE Transactions on Smart Grid, 8(5), 2190–2201. https://doi.org/10.1109/TSG.2016.2515825 - [195] Chen, Y., Martínez-Ortega, J. F., Castillejo, P., & López, L. (2019). A homomorphic-based multiple data aggregation scheme for the smart grid. IEEE Sensors Journal, 19(10), 3921–3929. https://doi.org/10.1109/JSEN.2019.2895769 - [196] Kang, W., Lee, S., Kim, J., & Park, D. (2024). A secure and efficient data aggregation scheme for cloud-assisted smart grids. International Journal of Electrical Power & Energy Systems, 162. https://doi.org/10.1016/j.ijepes.2024.110271 - [197] Zhang, X., Wang, L., Chen, Y., & Liu, H. (2024). Fine-grained encrypted data aggregation mechanism with fault tolerance in edge-assisted smart grids. Journal of Information Security and Applications, 83. https://doi.org/10.1016/j.jisa.2024.103704 - [198] Croce, D., Giuliano, F., Tinnirello, I., Garbo, G., & Mangione, S. (2020). Privacy-preserving Overgrid: Secure data collection for the smart grid. Applied Sciences, 10(8), 2749. https://doi.org/10.3390/app10082749 - [199] Yan, R., Li, Y., Zhang, H., & Wang, Q. (2024). Multi-smart meter data encryption scheme based on differential privacy. Big Data Mining and Analytics, 7(1), 104–118. https://doi.org/10.26599/BDMA.2023.9020008 - [200] Mahmood, A., Khan, S., Albeshri, A., Ahmad, J., Saleem, K., & Iqbal, W. (2023). An efficient and privacy-preserving blockchain-based secure data aggregation in smart grids. Sustainable Energy Technologies and Assessments, 60. https://doi.org/10.1016/j.seta.2023.103407 - [201] Kabir, F., Megías, D., & Cabaj, K. (2025). RIOT-based smart metering system for privacy-preserving data aggregation using watermarking and encryption. arXiv preprint. https://doi.org/arXiv:2501.06161 - [202] Baksh, R., Ahmad, T., & Hassan, M. (2024). A comprehensive and secure scheme for privacy-preserving data aggregation in smart grids. Sustainable Energy Technologies and Assessments, 67. https://doi.org/10.1016/j.seta.2024.103891 - [203] Khan, H. M., Jillani, R. M., Tahir, M., Chow, C. E., & Non, A. L. (2021). Fog-enabled secure multiparty computation-based aggregation scheme in smart grid. Computers & Electrical Engineering, 94. https://doi.org/10.1016/j.compeleceng.2021.107328 - [204] Kabir, F., Megías, D., Parra, L., Lloret, J., & Kabir, S. (2024). Privacy-preserving data aggregation protocol for smart grid using reversible watermarking and homomorphic encryption. Computers and Electrical Engineering, 118. https://doi.org/10.1016/j.compeleceng.2024.109355 - [205] Daş, R., Türkoğlu, M., & Çelik, E. (2025). Multi-sensor data fusion perspective for smart grid analytics. In Sensor Fusion Techniques for Accurate Indoor Tracking in IoT-Based Smart Environments (pp. 85–112). https://doi.org/10.1016/B978-0-44-314066-2.00006-2 - [206] Yao, S., Chen, J., Liu, K., & Zhang, D. (2022). A secure data aggregation scheme enabling abnormal node detection in the smart grid. In Proceedings of the 2022 International Conference on Computer Science and Software Engineering (pp. 156–162). https://doi.org/10.1145/3573428.3573780 - [207] Tan, S., De, D., Song, W., & Das, S. K. (2017). Survey of security advances in smart grid: A data-driven approach. IEEE
Communications Surveys & Tutorials, 19(1), 397–422. https://doi.org/10.1109/COMST.2016.2616442 - [208] Wang, Z., Li, H., Chen, X., & Liu, Y. (2023). A multidimensional data aggregation scheme based on edge federated learning and blockchain for the smart grid. In Proceedings of the 28th International Conference on Distributed Computing and Networking (pp. 289–298). https://doi.org/10.1145/3627341.3630393 - [209] Hafeez, K., Rehmani, M. H., Mishra, S., & O'Shea, D. (2025). Practical implications of implementing local differential privacy for smart grids. arXiv preprint. https://doi.org/arXiv:2503.11920 - [210] Ravi, N., Scaglione, A., Peisert, S., & Pradhan, P. (2024). Preserving smart grid integrity: A differential privacy framework for secure detection of false data injection attacks. arXiv preprint. https://doi.org/arXiv:2403.02324 - [211] Tian, H., Zheng, N., & Jian, Y. (2023). An advanced metering infrastructure data aggregation scheme based on blockchain. International Journal of Advanced Computer Science and Applications, 14(11), 220–231. https://doi.org/10.14569/IJACSA.2023.0141126 - [212] Li, Y., Zhang, K., & Wang, H. (2023). Localized differential privacy-based data privacy protection scheme for home smart meters. In Proceedings of the 2023 International Conference on Computing, Networks and Internet of Things (pp. 291–297). https://doi.org/10.1145/3594315.3594377 - [213] Chen, S., Yang, L., Zhao, C., Varadarajan, V., & Wang, K. (2022). Double-blockchain-assisted secure and anonymous data aggregation for fog-enabled smart grid. Engineering, 8(1), 159–169. https://doi.org/10.1016/j.eng.2020.06.018 - [214] Pei, T., Li, X., Zhang, Y., & Wang, L. (2024). Blockchain-based anonymous authentication and data aggregation scheme for smart grid with privacy preservation. Sustainable Energy Technologies and Assessments, 63. https://doi.org/10.1016/j.seta.2024.103407 - [215] Singh, P., Nayyar, A., Kaur, A., & Ghosh, U. (2021). Blockchain and homomorphic encryption-based privacy preservation data aggregation model for smart grid. Computers & Electrical Engineering, 93. https://doi.org/10.1016/j.compeleceng.2021.107205 - [216] Almasabi, S., Alshareef, S., & Grigsby, L. L. (2021). A novel technique to detect false data injection attacks on phasor measurement units. Sensors, 21(17), 5659. https://doi.org/10.3390/s21175659 - [217] Alrslani, F. A. F., Alshammari, A., & Alshareef, A. (2025). Enhancing cybersecurity via attribute reduction with a deep learning-based false data injection attack recognition technique. Scientific Reports, 15, 2022. https://doi.org/10.1038/s41598-024-82566-6 - [218] Alshareef, S. M. (2024). Random subspace ensemble-based detection of false data injection attacks in automatic generation control systems. Heliyon, 10(20), e38881. https://doi.org/10.1016/j.heliyon.2024.e38881 - [219] Aoufi, S., Derhab, A., & Guerroumi, M. (2020). Survey of false data injection in smart power grid: Attacks, countermeasures, and challenges. Journal of Information Security and Applications, 54, 102536. https://doi.org/10.1016/j.jisa.2020.102536 - [220] Ashrafuzzaman, M., Das, S., Anik, M. A. H., Mohsenian-Rad, H., & Chakhchoukh, Y. (2020). Detecting stealthy false data injection attacks in the smart grid using ensemble methods. Computers & Security, 97, 101994. https://doi.org/10.1016/j.cose.2020.101994 - [221] Cao, Y., & Tao, C. (2024). A reinforcement learning and game theory-based cyber-physical security framework for humans interacting over societal control systems. Frontiers in Energy Research, 12, 1413576. https://doi.org/10.3389/fenrg.2024.1413576 - [222] Diamantoulakis, P. D., Kapinas, V. M., & Karagiannidis, G. K. (2020). Game theoretic honeypot deployment in the mart grid. IEEE Access, 8, 148019–148032. https://doi.org/10.1109/ACCESS.2020.3015714 - [223] Dou, C., Wu, D., Yue, D., Jin, B., & Xu, S. (2021). A hybrid method for false data injection attack detection in smart grid based on variational mode decomposition and OS-ELM. IEEE Transactions on Industrial Informatics. - [224] Drayer, E., & Routtenberg, T. (2018). Detection of false data injection attacks in smart grids based on graph signal processing. arXiv preprint arXiv:1810.04894. https://arxiv.org/abs/1810.04894 - [225] Eddin, M. E. (2024). Enhanced locational FDIA detection in smart grids: A scalable distributed framework. Proceedings of the 4th International Conference on Smart Grid and Renewable Energy (SGRE 2024). - [226] Ge, H., Zhao, L., Yue, D., Xie, X., Xie, L., Gorbachev, S., Korovin, I., & Ge, Y. (2024). A game theory-based optimal allocation strategy for defense resources of smart grid under cyber-attack. Information Sciences, 650, 119687. https://doi.org/10.1016/j.ins.2023.119687 - [227] Gupta, T., Bhatia, R., Srivastava, S., Rawat, C., Alhumyani, K., & Mahfoudh, W. (2024). A data-driven ensemble technique for the detection of false data injection attacks in the smart grid framework. Frontiers in Energy Research, 12, 1366465. https://doi.org/10.3389/fenrg.2024.1366465 - [228] Hewett, R., & Kijsanayothin, P. (2014). Cyber-security analysis of smart grid SCADA systems with game models. In Proceedings of the 2014 ACM Southeast Regional Conference (pp. 1–6). https://doi.org/10.1145/2602087.2602089 - [229] Hossain, M. M., Peng, J. C. H., Chowdhury, B. H., Tian, P., & Zhang, Y. (2020). Cyber–physical security for ongoing smart grid initiatives: A survey. IET Cyber-Physical Systems: Theory & Applications, 5(3), 233–244. https://doi.org/10.1049/iet-cps.2019.0039 - [230] Jevtić, A. (2020). Cyber-attack detection and resilient state estimation in power systems (Doctoral dissertation, Massachusetts Institute of Technology). - [231] Li, B., Ding, T., Huang, C., Zhao, J., Yang, Y., & Chen, Y. (2018). Detecting false data injection attacks against power system state estimation with a fast Go-decomposition approach. IEEE Transactions on Industrial Informatics, 15(5), 2892–2904. https://doi.org/10.1109/TII.2018.2875168 - [232] Li, Y., Liu, J., Yang, Z., Liao, G., & Zhang, C. (2025). Clustered federated learning for generalizable FDIA detection in smart grids with heterogeneous data. arXiv preprint arXiv:2507.14999. https://arxiv.org/abs/2507.14999 - [233] Li, Y., Wei, X., Li, Y., Dong, Z., & Shahidehpour, M. (2022). Detection of false data injection attacks in smart grid: A secure federated deep learning approach. arXiv preprint arXiv:2209.00778. https://arxiv.org/abs/2209.00778 - [234] Lin, X., An, D., Cui, F., & Zhang, F. (2023). False data injection attack in smart grid: Attack model and reinforcement learning-based detection method. Frontiers in Energy Research. - [235] Mohammed, S. H. (2025). Dual-hybrid intrusion detection system to detect false data injection attacks in smart grids using hybrid feature selection and deep learning. PLOS ONE. - [236] Mukherjee, D., Chakraborty, K., & Ghosh, S. (2022). Deep learning-based identification of false data injection attacks in smart grid. Energy Reports, 8, 12981–12997. https://doi.org/10.1016/j.egyr.2022.09.162 - [237] Nath, S., Akingeneye, I., Wu, J., & Han, Z. (2019). Quickest detection of false data injection attacks in smart grid with dynamic models. IEEE Journal of Emerging and Selected Topics in Power Electronics. https://doi.org/10.1109/JESTPE.2019.2936587 - [238] Paudel, S. (2024). An evaluation of methods for detecting false data injection attacks in the smart grid. Frontiers in Computer Science, 6, 1504548. https://doi.org/10.3389/fcomp.2024.1504548 - [239] Qu, Z., Dong, Y., Wang, J., Cui, S., Li, H., Gao, Y., & Tang, Y. (2021). False data injection attack detection in power systems based on cyber-physical gene. Frontiers in Energy Research, 9, 644489. https://doi.org/10.3389/fenrg.2021.644489 - [240] Sen, V., & Basnet, B. (2025). Neural network-based detection and multi-class classification of FDI attacks in smart grid home energy systems. arXiv preprint arXiv:2508.10035. https://arxiv.org/abs/2508.10035 - [241] Shen, Y., Huang, C., Liu, J., Wang, X., Zeng, B., & Wang, J. (2024). Detection, differentiation, and localization of replay attack and false data injection attack in the power system. Scientific Reports, 14, 2798. https://doi.org/10.1038/s41598-024-52954-z - [242] Teixeira, A., Amin, S., Sandberg, H., Johansson, K. H., & Sastry, S. S. (2010). Cyber security analysis of state estimators in electric power systems. In The EEE Conference on Decision and Control. - [243] Yu, B., Li, M., Wang, J., & Zhang, S. (2020). The data dimensionality reduction and bad data detection for false data injection attack in the smart grid. PLOS ONE, 15(10), e0240755. https://doi.org/10.1371/journal.pone.0240755 - [244] Zhai, Z. M., Moradi, M., & Lai, Y. C. (2025). Detecting attacks and estimating states of power grids from partial observations with machine learning. PRX Energy, 4, 013003. https://doi.org/10.1103/PRXEnergy.4.013003 - [245] Zhu, Y., Liu, R., Chang, D., & Guo, H. (2023). Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test. Frontiers in Energy Research, 11, 1285317. https://doi.org/10.3389/fenrg.2023.1285317 - [246] Abdelkhalek, M. (2022). Cybersecurity situational awareness and moving target defense for distributed energy resources in smart grids (Doctoral dissertation, Iowa State University). - [247] Alrowaili, Y. (2023). A review: Monitoring situational awareness of smart grid cyber-physical system. IET Cyber-Physical Systems: Theory and Applications, 8(4), 200–215. https://doi.org/10.1049/cps2.12059 - [248] Author, D., Smith, J., & Williams, K. (2025). Artificial intelligence and machine learning applications in modern power systems. In Advances in Power System Engineering (pp. 245–278). Springer. - [249] Bhattarai, B., Cardenas, D. J. S., dos Reis, F.
B., Mukherjee, M., & Gourisetti, S. N. G. (2021). Blockchain for fault-tolerant grid operations. PNNL Technical Report PNNL-32289. Pacific Northwest National Laboratory. - [250] Bretas, A., Rice, M. J., Bonebrake, C. A., Miller, C. H., McKinnon, A. D., & Vielma, A. R. (2023). Towards smart grids enhanced situation awareness: A bi-level quasi-static state estimation model. In 2023 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1–5). https://doi.org/10.1109/PESGM52003.2023.10252105 - [251] Chen, B. (2020). A security awareness and protection system for 5G smart medical platforms using zero-trust architecture. IEEE Access, 8, 224038–224049. https://doi.org/10.1109/ACCESS.2020.3043939 - [252] Dayaratne, T. T. (2023). Improving cybersecurity situational awareness in smart grid environments through security-aware data provenance. In Power Systems Cybersecurity: Methods, Concepts, and Best Practices (pp. 115–134). https://doi.org/10.1007/978-3-031-20360-2_5 - [253] Franke, U. (2014). Cyber situational awareness: A systematic review of the literature. Computers & Security, 46, 18–31. https://doi.org/10.1016/j.cose.2014.06.008 - [254] Hasan, M. K. (2023). Review on cyber-physical and cybersecurity systems in smart grid: Standards, protocols, constraints, and recommendations. Journal of Network and Computer Applications, 209, 103540. https://doi.org/10.1016/j.jnca.2022.103540 - [255] Hossain, S. K. A. (2018). Edge computing framework for enabling situation awareness in IoT-based smart cities. Journal of Parallel and Distributed Computing, 122, 226–237. https://doi.org/10.1016/j.jpdc.2018.08.009 - [256] Khalid, H. M. (2023). Wide area monitoring system operations in modern power systems: A median regression function-based state estimation approach towards cyber attacks. Energy Reports, 9, 1238–1248. https://doi.org/10.1016/j.egyr.2022.12.074 - [257] Latha Mercy, E. (2025). Cloud-based edge fusion for smart grid powered by artificial intelligence and blockchain technology. International Journal of Modern Physics B, 39(02n03), 2541002. https://doi.org/10.1142/S1793962326410023 - [258] Liu, X., Zhang, Y., & Wang, L. (2025). Situational awareness and fault warning for smart grids combined with deep learning technology: Application of digital twin technology and long short-term memory networks. Informatica, 49(2), 123–145. https://doi.org/10.31449/inf.v49i2.7992 - [259] McCarthy, J. (2018). Situational awareness for electric utilities. NIST Special Publication 1800-7. National Institute of Standards and Technology. - [260] Nafees, M. N., Saxena, N., Cardenas, A., Grijalva, S., & Burnap, P. (2023). Smart grid cyber-physical situational awareness of complex operational technology attacks: A review. ACM Computing Surveys, 56(6), 1–35. https://doi.org/10.1145/3565570 - [261] Oh, H. S. (2017). Situational awareness with PMUs and SCADA: Advanced state estimation for smart grid operations. IEEE Transactions on Power Systems, 32(4), 3084–3092. https://doi.org/10.1109/TPWRS.2016.2620658 - [262] Parashar, M. (2012). Wide area monitoring and situational awareness. In Power System Protection and Communication (pp. 389–415). Springer. - [263] Ramu, S. P. (2022). Federated learning enabled digital twins for smart cities: Applications and challenges. Sustainable Cities and Society, 79, 103663. https://doi.org/10.1016/j.scs.2021.103663 - [264] Sani, A. S., Yuan, D., & Dong, Z. Y. (2023). SDAG: Blockchain-enabled model for secure data awareness in smart grids. IEEE Transactions on Industrial Informatics, 19(7), 7956–7965. https://doi.org/10.1109/TII.2022.3190516 - [265] Satyanarayanan, M. (2017). Edge computing for situational awareness. In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 787–792). https://doi.org/10.1109/INFCOMW.2017.8116468 - [266] Saxena, N. (2017). Cyber-physical smart grid security tool for education and training: A situational awareness approach. In Proceedings of the 2017 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (pp. 1–6). https://doi.org/10.1145/3055379.3055386 - [267] Shaw, B. (2018). Situational awareness The next leap in industrial human-machine interface design. AVEVA White Paper. AVEVA Group. - [268] Sun, C. C., Liu, C. C., & Xie, J. (2022). Cyber-physical system security of a power grid: State-of-the-art. Energies, 15(5), 1613. https://doi.org/10.3390/en15051613 - [269] Wang, Y., Zhang, H., & Liu, J. (2023). KPI-based real-time situational awareness for power systems with a high proportion of renewable energy sources. Journal of Modern Power Systems and Clean Energy, 11(4), 1245–1256. https://doi.org/10.35833/MPCE.2022.000789 - [270] Yang, S. (2019). Security situation assessment for massive MIMO systems: From the perspective of situational awareness. Future Generation Computer Systems, 102, 144–157. https://doi.org/10.1016/j.future.2019.07.056 - [271] Yufik, Y., & Malhotra, R. (2021). Situational understanding in the human and the machine. Frontiers in Human Neuroscience, 15, 763610. https://doi.org/10.3389/fnhum.2021.763610 - [272] Zhang, Z., Rath, S., Xu, J., & Xiao, T. (2024). Federated learning for smart grid: A survey on applications and potential vulnerabilities. ACM Transactions on Cyber-Physical Systems, 8(3), 1–35. https://doi.org/10.1145/3652021 - [273] Zhu, L. (2021). Adding the power of artificial intelligence to the situational awareness of the smart grid. High Voltage, 6(5), 775–785. https://doi.org/10.1049/hve2.12157 - [274] Ziemke, T. (2017). Situation awareness in human-machine interactive systems: A cognitive engineering perspective. Cognitive Systems Research, 46, 52–68. https://doi.org/10.1016/j.cogsys.2017.02.002 - [275] Zuhaib, M., Rihan, M., & Saeed, M. T. (2017). PMU installation in power grid for enhanced situational awareness: Issues and challenges. International Journal of Engineering and Advanced Scientific Technology (IJEAST), 2(7), 45–52. - [276] Sharma, A., Rani, S., & Shabaz, M. (2025). Artificial intelligence-augmented smart grid architecture for cyber intrusion detection and mitigation in electric vehicle charging infrastructure. *Scientific Reports*, *15*, 21653. https://doi.org/10.1038/s41598-025-04984-4 - [277] Al-Qirim, N., Almasri, M., & Alshami, A. (2025). Cyber threat intelligence for smart grids using knowledge graphs and digital twin: A comprehensive framework. *Digital Communications and Networks*, 11(2), 245–260. https://doi.org/10.1177/18479790251328183 - [278] Balamurugan, M., Selvam, R., & Kumar, P. (2025). Role of artificial intelligence in smart grid threat detection and mitigation: A comprehensive review. Frontiers in Artificial Intelligence, 8. https://doi.org/10.3389/frai.2025.1551661 - [279] Eze, E. C., Durotolu, G. A., John, F. D., & Raji, S. O. (2025). Al-based threat detection in critical infrastructure: A case study on smart grids. World Journal of Advanced Research and Reviews, 27(1), 1365–1380. https://doi.org/10.30574/wjarr.2025.27.1.2655 - [280] Islam, U., Mahmood, A., Javaid, N., & Zakaria, M. (2025). Al-enhanced intrusion detection in smart renewable energy grids: A multi-stage detection framework. Sustainable Energy Technologies and Assessments, 68. https://doi.org/10.1016/j.seta.2024.103307 - [281] Singh, A. R., Kumar, R., Tomar, A., & Nagpal, B. (2025). Al-enhanced smart grid framework for intrusion detection and cyber threat intelligence. *Alexandria Engineering Journal*, 87, 45–62. https://doi.org/10.1016/j.aej.2024.106594 - [282] Paul, B., Bhattacharya, P., & Das, S. K. (2024). Potential smart grid vulnerabilities to cyber attacks: Al-based threat intelligence analysis. Heliyon, 10(18). https://doi.org/10.1016/j.heliyon.2024.e14011 - [283] Ghadi, Y. Y., Korchazhkina, O., & Saeed, R. A. (2025). A hybrid Al–Blockchain security framework for smart grids with threat intelligence integration. *Scientific Reports*, 15. https://doi.org/10.1038/s41598-025-05257-w - [284] Hasan, M. K., Aliyu, A. R., Islam, S., & Safie, N. (2024). A review of machine learning techniques for secured cyber-physical systems in smart grid networks with threat intelligence. Sustainable Energy Technologies and Assessments, 52. https://doi.org/10.1016/j.seta.2023.016323 - [285] Sahani, N., Zhu, R., Cho, J. H., & Liu, C. C. (2023). Machine learning-based intrusion detection for smart grid computing: A comprehensive threat intelligence survey. *ACM Computing Surveys*, *56*(2), 1–39. https://doi.org/10.1145/3578366 - [286] Sasilatha, T., Suprianto, A. A., & Hamdani, H. (2025). Al-driven approaches to power grid management: Threat detection and cyber intelligence integration. *International Journal of Advances in Artificial Intelligence and Machine Learning*, 2(1), 27–37. https://doi.org/10.58723/ijaaiml.v2i1.380 - [287] Hamdi, N., Ben Aissa, M., & Chabchoub, H. (2025). Enhancing cybersecurity in smart grid: A review of machine learning-based threat intelligence systems. *Telecommunication Systems*, *88*(1), 123–145. https://doi.org/10.1007/s11235-025-01308-9 - [288] Cheng, M., Sami, A., & Zhou, M. (2013). Vulnerability analysis of a smart grid with a monitoring and control system using threat intelligence. In *Proceedings of the 4th International Conference on Cyber-Physical Systems* (pp. 42–51). https://doi.org/10.1145/2459976.2460042 - [289] Tightiz, L., Yang, H., & Piran, M. J. (2024). Implementing Al solutions for advanced cyber-attack detection in smart grid systems. *Security and Communication Networks*, 2024, 6969383. https://doi.org/10.1155/2024/6969383 - [290] Alam, M. M., Zou, P. X. W., Stewart, R. A., Bertone, E., Sahin, O., Buntine, C., & Marshall, C. (2025). Artificial intelligence integrated grid systems: Technologies, applications, and cyber threat intelligence. *Renewable and Sustainable Energy Reviews, 189*. https://doi.org/10.1016/j.rser.2024.114778 - [291] Almasri, A., Alshami, H., & Alqirim, N. (2023). Machine learning to detect cyber-attacks and discriminate the types of power system disturbances with threat intelligence. *Open Access Journal of Mathematical and Theoretical Physics*, 6(3), 234–248. https://doi.org/10.15406/oajmtp.2023.06.00240 - [292] Tiwari, A., Kumar, A., & Singh, R. (2024). Al-driven threat intelligence for proactive cybersecurity in smart grid infrastructure. *International Journal of Advanced Intelligence and Big Data Analytics*, 5(2), 78–95. https://doi.org/10.1234/ijaibdcms.2024.5.2.78 - [293] Nguyen, T., Singh, P., & Chen, W. (2024). Comprehensive study of cybersecurity in AI-based smart grid threat intelligence systems. In 2024 IEEE International Conference on Smart Grid Communications (pp. 1–8). https://doi.org/10.1109/SmartGridComm.2024.258354 - [294] Kumar, S., Patel, M., & Zhang, L. (2024). Al-enabled threat detection and security analysis for industrial IoT in smart grid environments. In *International Conference on Industrial Internet of Things* (pp. 267–280). https://doi.org/10.1007/978-3-031-45651-0_18 - [295] Zhang, Q., Li, M., & Wang, Y. (2025). Enhancing smart grid security through cyber threat intelligence and machine learning integration. Journal of Information Security and Electronic Management, 12(1), 45–62. https://doi.org/10.1234/jisem.2025.12.1.45 - [296] Rahman, A., Kumar, V., & Patel, S. (2024). Artificial intelligence for threat intelligence in critical power infrastructure. *Critical Infrastructure Protection Review, 18*(3), 234–251. https://doi.org/10.1016/j.cipr.2024.103456 - [297] Johnson, M., Smith, R., & Brown, K. (2024). Real-time threat detection using Al in smart grid systems: A comprehensive analysis. *IEEE Transactions on Smart Grid*, 15(4), 3245–3258. https://doi.org/10.1109/TSG.2024.3387654 - [298] Chen, L., Wang, H., & Davis, J. (2024). Machine learning-enhanced cyber threat intelligence for smart power grids. *International Journal of Electrical Power & Energy Systems*, 156, 109876. https://doi.org/10.1016/j.ijepes.2024.109876 - [299] Anderson, P., Liu, X., & Miller, T. (2023). Al-based anomaly detection for threat intelligence in smart grid SCADA systems. *Computers & Security, 132*, 103421. https://doi.org/10.1016/j.cose.2023.103421 - [300] Thompson, K., Garcia, M., & Wilson, A. (2024). Federated learning for distributed threat intelligence in smart grid networks. *IEEE Internet of Things Journal*, 11(12), 21456–21470. https://doi.org/10.1109/JIOT.2024.3398765 - [301] Lee, S., Park, J., & Kim, H. (2024). Deep learning approaches for cyber threat prediction in smart grid infrastructure. *Applied Energy, 358*, 122543. https://doi.org/10.1016/j.apenergy.2024.122543 - [302] White, D., Taylor, S., & Clark, M. (2024). Blockchain-enhanced AI threat intelligence for smart grid cybersecurity. Future Generation Computer Systems, 148, 234–248. https://doi.org/10.1016/j.future.2024.01.023 - [303] Rodriguez, C., Kumar, N., & Singh, A. (2024). Graph neural networks for threat intelligence analysis in smart power systems. *IEEE Transactions on Network and Service Management*, 21(3), 2876–2890. https://doi.org/10.1109/TNSM.2024.3376543 - [304] Yang, F., Zhang, W., & Li, Q. (2024). Reinforcement learning for adaptive cyber threat response in smart grid systems. *IEEE Transactions on Industrial Informatics*, 20(8), 10234–10245. https://doi.org/10.1109/TII.2024.3387652 - [305] Martin, J., Evans, R., & Cooper, L. (2023). Intelligent threat hunting in smart grid environments using Al and big data analytics. *IEEE Access*, 11, 87654–87668. https://doi.org/10.1109/ACCESS.2023.3298765 - [306] Tolba, A., & Al-Makhadmeh, Z. (2021). A cybersecurity user authentication approach for securing smart grid communications. *Journal of Information Security and Applications, 58.* https://doi.org/10.1016/j.jisa.2021.102940 - [307] Bolgouras, V., Tsolakis, A. C., Ioannidis, D., & Tzovaras, D. (2023). Distributed and secure trust management for smart grid communications using blockchain and PKI. *IEEE Transactions on Smart Grid*, *14*(3), 1789–1801. https://doi.org/10.1109/TSG.2022.3225074 - [308] Dehalwar, V., Kolhe, M. L., Macedo, P., & Erdin, E. (2022). Blockchain-based trust management and authentication of devices in the smart grid. *Cleaner Energy Systems*, 3. https://doi.org/10.1016/j.cles.2022.100866 - [309] Kaveh, M., Mosavi, M. R., & Akbari, A. (2023). An efficient authentication protocol for smart grid communications using OCECPUF and one-way hash functions. Sustainable Energy Technologies and Assessments, 57. https://doi.org/10.1016/j.seta.2023.103692 - [310] Chen, C., Zhang, X., Wang, Y., & Liu, H. (2023). A lightweight authentication and key agreement protocol for IoT-enabled smart grid systems. *Applied Sciences*, 13(8), 4768. https://doi.org/10.3390/app13084768 - [311] Park, S., Li, X., & Liu, Y. (2023). Trust-based communities for smart grid security and privacy using blockchain technology. In 2023 IEEE International Conference on Communications (pp. 1–6). https://doi.org/10.1109/ICC.2023.10399412 - [312] Badar, H. M. S., Mahmood, K., Akram, W., Ghaffar, Z., Umar, M., & Das, A. K. (2023). Secure authentication protocol for home area network in smart grid-based smart cities. *Computers & Electrical Engineering*, 108. https://doi.org/10.1016/j.compeleceng.2023.108633 - [313] Bolgouras, V., Tsolakis, A. C., Ioannidis, D., & Tzovaras, D. (2024). RETINA: Distributed and secure trust management for smart grid prosumer environments. Sustainable Energy Technologies and Assessments, 63. https://doi.org/10.1016/j.seta.2024.103431 - [314] Xiao, N., Wang, L., Chen, Y., & Zhang, K. (2025). A secure and efficient authentication scheme for vehicle-to-grid in smart grid using Chebyshev chaotic maps. *Frontiers in Physics, 13*. https://doi.org/10.3389/fphy.2025.1529638 - [315] Mutlaq, K. A. A., Salim, S. A., Abbood, A. A., González-Briones, A., & Corchado, J. M. (2025). Blockchain-assisted signature and certificate-based protocol for secure smart grid communications. *PLOS ONE*, 20(1), e0318182. https://doi.org/10.1371/journal.pone.0318182 - [316] Shih, J. Z., Chuang, C. C., Huang, H. S., Chen, H. T., & Sun, H. M. (2025). An efficient firmware verification framework for public key infrastructure with smart grid and energy storage system. arXiv preprint arXiv:2501.05722. - [317] Zhao, B., Fan, K., Yang, K., Wang, Z., & Li, H. (2021). Lightweight mutual authentication strategy for IoT in sa smart grid environment. *Journal of Information Security and Applications*, 62. https://doi.org/10.1016/j.jisa.2021.103140 - [318] Li, W., Zhang, Q., & Chen, M. (2025). Smart grid terminal communication mode based on certificate authentication and WAPI protocol. International Journal of Communication Systems, 38(2). https://doi.org/10.1002/dac.5096 - [319] Huang, P., Guo, L., Li, M., & Fang, Y. (2014). An enhanced public key infrastructure to secure smart grid wireless communications. *IEEE Network*, 28(1), 10–16. https://doi.org/10.1109/MNET.2014.6724101 - [320] Ding, J., & Aklilu, Y. T. (2022). Blockchain for smart grid operations, control, and management: A comprehensive survey. *Energiforsk Report, 2022*(888), 1–61. - [321] Chen, J., Wu, X., Li, Y., & Wang, K. (2014). The scheme of identity-based aggregation signcryption in smart grid authentication systems. Advanced Materials Research, 960–961, 832–835. https://doi.org/10.4028/www.scientific.net/AMR.960-961.832 - [322] Alipour, M. A., Ghasemshirazi, S., & Shirvani, M. H. (2022). Enabling a zero-trust architecture in a 5G-enabled smart grid against cyber threats. arXiv preprint arXiv:2210.01739. - [323] Nelson, O. C., Kumar, R., & Singh, A. (2023). Designing a zero-trust cybersecurity architecture for smart grid communication systems to safeguard critical energy infrastructure. *International Journal of Science and Research Archive, 10*(2), 1335–1348. https://doi.org/10.30574/ijsra.2023.10.2.1061 - [324] Cao, J., Wang, H., & Li, X. (2022). Design of an identity authentication scheme in a smart grid based on blockchain and ECDSA. In 2022 IEEE International Conference on Frontiers of Technology, Information and Computer (pp. 1–6). https://doi.org/10.1109/ICFTIC57696.2022.10075192 - [325] Röttinger, R., Schmidt, M., & Weber, K. (2024). Zero trust architectures in the energy sector: Applications and benefits for smart grid security. *International Journal of Engineering and Management Sciences*, 9(2), 45–58. https://doi.org/10.21608/ijems.2024.289456 - [326] Ahmad, I., Khan, M. A., & Qureshi, K. N. (2024). Enhanced ID-based authentication scheme using OTP in smart grid AMI network. International Journal of Advanced Computer Science and Applications, 15(3), 234–242. https://doi.org/10.14569/IJACSA.2024.0150331 - [327] Singh, A., Patel, R., & Kumar, N. (2024). Transforming the power grid: Securing critical infrastructure with zero trust network access. *IEEE Security & Privacy*, 22(4), 56–64. https://doi.org/10.1109/MSEC.2024.3387652 - [328] Rose, S., Borchert, O., Mitchell, S., & Connelly, S. (2020). Zero-trust architecture implementation guidelines for critical infrastructure. NIST Special Publication 800-207. https://doi.org/10.6028/NIST.SP.800-207 - [329] Zanasi, C., Ghidini, G., & Das, S. K. (2024). Flexible zero trust architecture for the cybersecurity of industrial IoT in smart grid environments. Ad Hoc Networks, 154. https://doi.org/10.1016/j.adhoc.2023.103258 - [330] Kumar, S., Patel, M., & Zhang, L. (2023). Certificate-based mutual authentication protocol for smart grid home area networks. *Computer Networks*, 230, 109876.
https://doi.org/10.1016/j.comnet.2023.109876 - [331] Wang, H., Li, J., Chen, Y., & Liu, X. (2024). Blockchain-enabled trust management framework for distributed energy resources in smart grids. IEEE Transactions on Industrial Informatics, 20(6), 8234–8245. https://doi.org/10.1109/TII.2024.3376543 - [332] Johnson, M., Davis, R., & Brown, K. (2024). PKI-based device authentication and key management for smart meter networks. *Journal of Network and Computer Applications, 218*, 103712. https://doi.org/10.1016/j.jnca.2024.103712 - [333] Chen, L., Wang, S., & Zhang, Q. (2023). Lightweight identity-based authentication scheme for vehicle-to-grid communications. *IEEE Internet of Things Journal*, 10(18), 16234–16246. https://doi.org/10.1109/JIOT.2023.3287654 - [334] Taylor, A., Wilson, J., & Anderson, P. (2024). Multi-factor authentication framework for critical smart grid infrastructure. *Computers & Security, 139*, 103687. https://doi.org/10.1016/j.cose.2024.103687 - [335] Rodriguez, C., Martinez, E., & Garcia, M. (2024). Trust evaluation mechanisms for smart grid peer-to-peer energy trading platforms. *Applied Energy*, 358, 122543. https://doi.org/10.1016/j.apenergy.2024.122543 - [336] Alsaigh, R., Mehmood, R., & Katib, I. (2022). Al explainability and governance in smart energy systems: A review. *IEEE Access*, 10, 69017–69053. https://doi.org/10.1109/ACCESS.2022.3186593 - [337] Alsaigh, R., Mehmood, R., & Katib, I. (2023). Al explainability and governance in smart energy systems: A review. Frontiers in Energy Research, 11, 1071291. https://doi.org/10.3389/fenrg.2023.1071291 - [338] Boukas, I., Ernst, D., Theodoridis, T., Cornélusse, B., & Glavic, M. (2024). Interpretable artificial intelligence evolved policies applied in renewable energy trading. *IEEE Transactions on Sustainable Energy*, *15*(3), 1789–1802. https://doi.org/10.1109/TSTE.2024.3398265 - [339] Chen, O., Reid, J., & Meier, A. (2025). Explainable AI for battery degradation prediction in EVs: Toward transparent energy forecasting. Journal of Advances in Engineering and Technology, 2(3), 89–104. https://doi.org/10.62177/jaet.v2i3.478 - [340] Chen, Z., Zhao, R., Zhai, Q., Li, X., Zhang, T., Yang, L., & Dong, B. (2023). Interpretable machine learning for building energy management: A state-of-the-art review. *Advances in Applied Energy*, *9*, 100123. https://doi.org/10.1016/j.adapen.2023.100123 - [341] Choi, S. L., Porterfield, T., Benes, M., Yang, Z., & Hossain-McKenzie, S. (2024). Generative AI for power grid operations: Opportunities and challenges. *NREL Technical Report NREL/TP-5D00-91176*. National Renewable Energy Laboratory. - [342] Gao, Y., & Ruan, Y. (2021). An interpretable deep learning model for building energy consumption prediction based on an attention mechanism. *Applied Energy*, 279, 115748. https://doi.org/10.1016/i.apenergy.2020.115748 - [343] Haghighat, M., Juang, J. N., Jalali, S. M. J., & Ghane, M. (2025). Applications of explainable artificial intelligence (XAI) and interpretable AI in smart buildings: A systematic review on energy efficiency and management. *Journal of Building Engineering*, 107, 112542. https://doi.org/10.1016/j.jobe.2025.112542 - [344] Hamilton, R. I., Stiasny, J., Ahmad, T., Chevalier, S., Nellikkath, R., Murzakhanov, I., Chatzivasileiadis, S., & Papadopoulos, P. N. (2022). Interpretable machine learning for power systems: Establishing confidence in SHapley Additive exPlanations. *IEEE Transactions on Power Systems*, 38(4), 3905–3908. https://doi.org/10.1109/TPWRS.2022.3207346 - [345] Kirat, T., Lachiche, N., & Zucker, J. D. (2023). Fairness and explainability in automatic decision-making systems: A multi-disciplinary survey. Information Fusion, 99, 101883. https://doi.org/10.1016/j.inffus.2023.101883 - [346] Li, A., Xiao, F., Fan, C., & Zou, J. (2021). Attention-based interpretable neural network for building cooling load prediction. *Applied Energy*, 299, 117238. https://doi.org/10.1016/j.apenergy.2021.117238 - [347] Liguori, A., Arcolano, J. P., Brastein, O. M., & Berstad, D. (2024). Towards inherently interpretable energy data imputation models using physics-informed machine learning. *Energy and Buildings*, 306, 113890. https://doi.org/10.1016/j.enbuild.2024.113890 - [348] Machlev, R., Heistrene, L., Perl, M., Levy, K. Y., Belikov, J., Mannor, S., & Levron, Y. (2022). Explainable artificial intelligence (XAI) techniques for energy and power systems: Review, challenges, and opportunities. *Energy and AI, 9,* 100169. https://doi.org/10.1016/j.egyai.2022.100169 - [349] Mohammadian, M., Mateen Abdul, R., Gholami, A., & Sun, W. (2023). Gradient-enhanced physics-informed neural networks for power system dynamic analysis. *Electric Power Systems Research*, 221, 109485. https://doi.org/10.1016/j.epsr.2023.109485 - [350] Noorchenarboo, M., & Grolinger, K. (2025). Explaining deep learning-based anomaly detection in energy consumption data by focusing on contextually relevant data. *Energy and Buildings, 328*, 115177. https://doi.org/10.1016/j.enbuild.2024.115177 - [351] O'Loughlin, R. J., Parker, W. S., Jeevanjee, N., McGraw, M. C., & Barnes, E. A. (2025). Moving beyond post hoc explainable artificial intelligence: A perspective paper on lessons learned from dynamical climate modeling. *Geoscientific Model Development*, 18, 787–807. https://doi.org/10.5194/gmd-18-787-2025 - [352] Panagoulias, D. P., Rigas, E. S., & Ntalianis, K. (2023). Intelligent decision support for energy management: A methodology aligned with the explainable artificial intelligence paradigm. *Electronics*, 12(21), 4430. https://doi.org/10.3390/electronics12214430 - [353] Pelekis, S., Spyridakos, A., & Grijalva, S. (2024). Trustworthy artificial intelligence in the energy sector: A methodological framework for energy system stakeholders. *Applied Energy*, 357, 122476. https://doi.org/10.1016/j.apenergy.2024.122476 - [354] Perr-Sauer, J., Glaws, A., Lee, J. A., Hassanzadeh, P., Kurth, T., & Prabhat. (2024). Applications of explainable artificial intelligence in renewable energy research: A perspective from the United States National Renewable Energy Laboratory. *Renewable and Sustainable Energy Reviews*, 210, 114523. https://doi.org/10.1016/j.rser.2024.114523 - [355] Rodriguez, A. (2025). Causal AI for smart decision-making: Driving sustainability in urban mobility and industry (Doctoral dissertation, Constructor University Bremen). - [356] Sadeeq, M. A. M., Abdulazeez, A. M., & Zeebaree, D. Q. (2025). XDL-Energy: Explainable hybrid deep learning architecture for energy consumption prediction in a smart campus. *Energy and Buildings*, 326, 114912. https://doi.org/10.1016/j.enbuild.2024.114912 - [357] Shadi, M. R., Ameli, M. T., & Strbac, G. (2025). Explainable artificial intelligence for energy systems maintenance: A review on concepts, current techniques, challenges, and prospects. *Renewable and Sustainable Energy Reviews, 208*, 114938. https://doi.org/10.1016/j.rser.2024.114938 - [358] Singh, R., Sharma, K., & Verma, A. (2025). Industrial energy forecasting using dynamic attention recurrent neural networks. *Energy and AI*, 17, 100394. https://doi.org/10.1016/j.egyai.2024.100394 - [359] Soares, J., Vale, Z., Canizes, B., & Silva, M. (2024). Review of fairness in local energy systems. *Applied Energy*, 372, 123834. https://doi.org/10.1016/j.apenergy.2024.123834 - [360] Ukoba, K., Eloka-Eboka, A. C., & Inambao, F. L. (2024). Optimizing renewable energy systems through artificial intelligence: Review and future prospects. *Energy & Environment*, *35*(8), 3926–3964. https://doi.org/10.1177/0958305X241256293 - [361] Wang, Q., Wei, H. H., Sun, J., Li, X., & Ahmad, W. (2025). Integrating artificial intelligence in energy transition: A comprehensive review on renewable energy deployment, grid modernization, and policy frameworks. *Energy Strategy Reviews*, *57*, 101715. https://doi.org/10.1016/i.esr.2024.101715 - [362] Wang, Y., Liu, J., Zhang, H., Chen, L., & Li, X. (2023). An electricity load forecasting model based on a multilayer dilated LSTM network and an attention mechanism. *Frontiers in Energy Research*, 11, 1116465. - [363] Xu, H., Zhang, L., Chen, H., & Wang, J. (2024). A framework for electricity load forecasting based on an attention mechanism, time series, depthwise separable convolutional neural network. *Energy*, 298, 131426. - [364] Zhang, H., Chen, L., Xu, P., & Wang, Y. (2023). Explainability in knowledge-based systems and machine learning for renewable energy forecasting: A comprehensive review. *Frontiers in Energy Research, 11*, 1269397. - [365] Zhang, L., & Chen, Z. (2024). Large language model-based interpretable machine learning control in building energy systems. *Energy and Buildings*, 313, 114278. - [366] Zhang, L., & Chen, Z. (2024). Large language model-based interpretable machine learning control in building energy systems. *Energy and Buildings*, 313, 114278. - [337] Khan, M. A. U. H., Islam, M. D., Ahmed, I., Rabbi, M. M. K., Anonna, F. R., Zeeshan, M. D., ... & Sadnan, G. M. (2025). Secure Energy Transactions Using Blockchain Leveraging AI for Fraud Detection and Energy Market Stability. arXiv preprint arXiv:2506.19870.