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| ABSTRACT 

Abstract 

The increasing digitalization of smart grids has heightened their vulnerability to sophisticated cyber threats, with false data 

injection (FDI) and other emerging attacks posing significant risks to grid stability, reliability, and resilience. Artificial intelligence, 

particularly machine learning (ML) and deep learning (DL), has gained prominence as a promising defense layer capable of 

detecting, mitigating, and adapting to these dynamic threats. However, the rapid growth of research in this area has produced 

fragmented findings across diverse methodologies, datasets, and evaluation strategies. To address this gap, our systematic 

review consolidates the current state of ML- and DL-driven approaches in smart grid cybersecurity, with a specific emphasis on 

FDI detection and defense against evolving adversarial tactics. We map the landscape of proposed techniques, highlight 

benchmark datasets and simulation environments, and critically examine strengths, limitations, and open challenges. In doing so, 

we establish a taxonomy of AI-based solutions that organizes existing efforts by learning paradigm, attack type, and deployment 

layer within the smart grid. Beyond cataloguing current achievements, we underscore persistent challenges such as scalability, 

data imbalance, adversarial robustness, and model explainability, all of which constrain real-world deployment. By synthesizing 

insights from both academic research and industrial practice, this review aims to provide a roadmap for researchers, 

practitioners, and policymakers seeking to develop resilient, trustworthy, and adaptive AI-driven cybersecurity mechanisms for 

future power systems. 
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1. INTRODUCTION 

The evolution of power systems into intelligent and interconnected smart grids has transformed the traditional electricity 

infrastructure into a cyber-physical system. This transformation, while enabling efficiency, automation, and resilience, has also 

introduced a broader attack surface for malicious actors. Smart grids integrate advanced information and communication 

technologies (ICT), Internet of Things (IoT) devices, distributed energy resources, and real-time data analytics, all of which are 

critical to ensuring stability and reliability in modern energy systems [1]. However, these interdependencies have simultaneously 

increased the susceptibility of power systems to sophisticated cyber threats such as false data injection (FDI), denial of service 

(DoS), replay attacks, and malware propagation [2]. Among these, FDI attacks have attracted particular concern due to their 

ability to stealthily manipulate state estimation processes, leading to cascading failures, economic losses, and potential blackouts 

[3]. The convergence of cybersecurity and artificial intelligence (AI) has emerged as a promising frontier to address these threats. 

AI-driven solutions, particularly machine learning (ML) and deep learning (DL), provide adaptive, data-driven approaches that 

can detect and mitigate previously unseen attacks while learning from dynamic system behavior [4]. Unlike traditional rule-based 

intrusion detection systems, AI-based methods can capture complex nonlinear patterns, improve anomaly detection accuracy, 
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and adapt to evolving adversarial strategies. These advantages have accelerated the adoption of ML and DL in diverse domains 

of smart grid security, including FDI detection, load forecasting under attack, intrusion detection systems, and adversarial 

resilience modeling [5], [6]. 

The domain of AI-enabled smart grid cybersecurity spans multiple layers of the energy ecosystem, from the physical power 

transmission infrastructure to control centers and end-user interfaces. Applications include real-time monitoring of supervisory 

control and data acquisition (SCADA) systems, anomaly detection in phasor measurement units (PMUs), protection of demand 

response programs, and securing vehicle-to-grid communications [7], [8]. Furthermore, AI methods leverage a variety of data 

modalities such as network traffic, sensor measurements, historical operational data, and simulation environments to create 

robust detection frameworks. These techniques bring several benefits, including early warning of attacks, improved situational 

awareness, and faster incident response, thereby contributing to grid resilience and operational continuity. Despite their 

potential, AI-driven cybersecurity approaches face critical limitations. On the positive side, ML and DL models offer superior 

scalability, adaptability, and detection accuracy compared to static approaches. They also enable predictive security, where 

threats can be anticipated rather than simply detected after occurrence. On the negative side, these methods often demand 

large, high-quality datasets for training, which are scarce in the power systems domain due to privacy concerns and the rarity of 

labeled cyberattack data. Moreover, issues such as adversarial machine learning, explainability, high computational cost, and 

real-time deployment constraints raise concerns about their practical feasibility [9], [10]. The trade-offs between model 

complexity, interpretability, and deployment readiness remain unresolved challenges for both academia and industry. 

AI in smart grid cybersecurity is thus a broad field that encompasses diverse techniques and deployment strategies, all aimed at 

protecting the grid from cyber-physical disruptions. There are several intersections between AI-based security mechanisms and 

related fields, such as blockchain for secure data sharing, edge computing for real-time inference, and digital twins for simulating 

attack-defense dynamics. These interconnections illustrate the multidisciplinary nature of smart grid security research, 

highlighting the need for holistic approaches that go beyond algorithmic accuracy alone. Cybersecurity for smart grids differs 

from traditional IT cybersecurity in significant ways. Traditional IT systems emphasize data confidentiality and integrity in isolated 

networks, whereas smart grid security prioritizes availability, real-time reliability, and resilience against cascading physical effects. 

In IT systems, breaches often lead to data leaks or financial losses, while in power systems, they can directly disrupt electricity 

supply, compromise public safety, and damage critical infrastructure. Furthermore, traditional IT systems rely on abundant 

labeled datasets and redundant infrastructures, whereas smart grids operate under stringent latency, resource, and operational 

constraints [11], [12]. This context underscores the necessity of AI-enabled solutions tailored specifically for smart grids rather 

than generic cybersecurity frameworks. 

We have undertaken the initiative to systematically explore and consolidate the area of AI-driven smart grid cybersecurity. This 

review occupies a significant position within the current state of the art by offering a comprehensive analysis, taxonomy 

development, and synthesis of ML- and DL-based approaches against FDI and other emerging attacks. Through critical 

evaluation of existing literature, datasets, algorithms, and implementation strategies, this study provides valuable insights into 

the practical challenges and research frontiers. Key contributions of this review include the following: 

●  This study identifies the domain of AI-enabled smart grid cybersecurity and categorizes the research landscape across 

multiple attack types and system layers. 

● Various ML and DL techniques are explored, along with the datasets, benchmarks, and simulation environments 

employed in this field. 

● A thorough comparative analysis of research works is presented, summarizing key contributions, methodologies, and 

observed limitations. 

● The review highlights state-of-the-art challenges such as adversarial robustness, explainability, scalability, and data 

imbalance, and discusses how these issues constrain deployment. 

● This study provides future research directions and recommendations that can guide both academic and industrial 

efforts toward developing resilient and trustworthy smart grid cybersecurity solutions. 

 

The outcomes of this work offer practical implications for industry professionals, policymakers, and researchers engaged in 

power systems security. By establishing a structured taxonomy and synthesizing key advancements, this review facilitates a 

clearer understanding of the AI-enabled defense landscape. It also lays the foundation for future studies aimed at addressing 

unresolved challenges and accelerating real-world deployment. The structure of this paper is organized as follows: Section I 

presents the introduction and motivation for the review. Section II provides a discussion of related studies and identifies research 

gaps. Section III describes the review methodology, including study selection and research questions. Section IV analyzes the 
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distribution of selected works, while Section V presents the taxonomy of AI-driven smart grid cybersecurity. Section VI discusses 

findings, open challenges, and future directions. Finally, Section VII concludes the paper. 

 

 

Figure 1. Taxonomy of AI-Driven Smart Grid Cybersecurity Approaches 

2. RELATED STUDIES 

In recent years, a substantial body of literature has emerged at the intersection of artificial intelligence and smart grid 

cybersecurity. Several broad surveys and systematic reviews have attempted to map this rapidly growing area, with emphasis on 

the detection of false data injection (FDI) and other cyber-physical attacks. For example, Zhang et al. et al. [13] provided a 

comprehensive survey of ML and DL techniques applied to smart grid security, cataloguing methods by attack type and 

reporting performance trends across benchmark testbeds. Similarly, Rao et al. et al. [14] synthesized advances in intelligent 

intrusion detection for energy systems, highlighting the proliferation of supervised classifiers and anomaly detectors while 

noting issues in reproducibility and dataset availability. These studies frame the current research landscape and expose recurring 

methodological limitations that motivate our systematic review. Focused investigations into false data injection attacks form a 

large and influential sub-literature. Several empirical and theoretical works have characterized FDI threats and proposed 

detection strategies that leverage statistical learning, sparse recovery, and graph-based models. Kumar et al. et al. [15] evaluated 

supervised detectors that rely on residual analysis in state estimation, demonstrating high detection rates under certain 

contamination regimes but also exposing sensitivity to adversary knowledge. More recent efforts by Li et al. et al. [16] combined 

topology-aware features with ensemble learning to improve robustness against stealthy FDI crafted using network constraints. 

Nevertheless, these studies typically assume controlled experiments on IEEE test systems and rarely validate methods on 

operational-scale traces, leaving open questions about transferability to live deployments. An additional strand by Park et al. et 
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al. [17] examined hybrid rule-learning pipelines that fuse physics-based invariants and ML scoring, showing promise but 

encountering scalability bottlenecks when applied to larger networks. 

A sizable literature addresses anomaly detection and intrusion detection using traditional machine learning models. Support 

vector machines, random forests, and isolation forests have been widely explored for flagging abnormal meter readings, network 

traffic anomalies, and telemetry drift. Ahmad et al. et al. [18] compared several classical learners across synthetic FDI scenarios, 

reporting that ensemble tree models often outperform linear classifiers on unbalanced datasets. Conversely, Santos et al. et al. 

[19] highlighted the limits of supervised approaches when labeled attack samples are scarce, advocating semi-supervised and 

one-class frameworks. Complementary work by Oliveira et al. et al. [20] evaluated unsupervised clustering and statistical process 

control techniques, finding reasonable false positive control but reduced sensitivity to low-magnitude, coordinated 

manipulations. Collectively, these studies show progress in baseline detection but leave unresolved the challenge of achieving 

high sensitivity while maintaining operational false alarm rates. Deep learning has attracted intense interest for its capacity to 

model complex spatiotemporal patterns in grid data. Architectures such as recurrent neural networks, convolutional models, 

autoencoders, and graph neural networks have been proposed to capture temporal dependencies, spatial topology, and 

multivariate correlations. Huang et al. et al. [21] demonstrated LSTM-based detectors for PMU streams that identify transient 

anomalies faster than sliding-window statistics. Chen et al. et al. [22] applied convolutional autoencoders for feature learning 

from synchronized measurement matrices, reporting improved detection in noisy environments. Notably, GNN-based 

approaches by Moreno et al. et al. [23] exploit grid topology explicitly, improving detection of topology-aware FDI that targets 

correlated buses. Despite strong in-sample performance, most DL studies emphasize accuracy metrics and often omit 

deployment considerations such as inference latency and model maintenance. 

Protection of state estimation and PMU integrity has been treated as a specific technical problem combining power-systems 

engineering and AI methods. Several studies propose augmented estimators, measurement authentication, and detection layers 

that monitor residuals and learned invariants. Singh et al. et al. [24] presented a layered detection framework that integrates 

residual checks with a supervised classifier trained on synthetic FDI scenarios. In parallel, Alvarenga et al. et al. [25] explored 

secure PMU placement and the use of redundancy-aware learning to reduce attacker stealth. These contributions advance 

detection capability but frequently rely on idealized PMU coverage and assume an attacker model with limited adaptivity, which 

underestimates adversaries who can adapt to deployed defenses. Benchmark datasets, testbeds, and simulators underpin 

progress but also constrain it. Studies often reuse IEEE bus systems, MATPOWER, and PowerWorld case studies, and custom 

simulation pipelines to generate attack traces. Park et al. et al. [26] surveyed common datasets and found heavy reliance on small 

synthetic systems such as the IEEE 14-bus and 118-bus cases. Wang et al. et al. [27] developed a larger curated dataset that 

includes correlated network traffic and meter streams, yet the dataset’s scope remains limited relative to real utility 

heterogeneity. Efforts to create realistic testbeds, including hardware-in-the-loop and real-time digital simulators, have been 

advanced by Garcia et al. et al. [28], but accessibility and reproducibility remain obstacles for independent validation. The scarcity 

of publicly available, labeled, and diverse datasets is therefore a persistent barrier to generalizable research. 

Adversarial machine learning has emerged as a critical concern as attackers target learning systems directly. Work in this area 

examines evasion attacks that craft malicious inputs and poisoning attacks that corrupt training data. Liu et al. et al. [29] 

demonstrated gradient-based evasion techniques that reduce detection scores of neural detectors while remaining within 

operational bounds. In response, defense strategies such as adversarial training, certified robustness bounds, and detection of 

adversarial perturbations have been proposed by Park et al. et al. [30]. These defenses show partial effectiveness in constrained 

scenarios but frequently impose computational overhead and do not generalize across attack strategies. The interplay between 

attacker adaptivity and defender resource limits remains underexplored in the smart grid context. Explainability, interpretability, 

and trust have received growing attention because operators require actionable insights rather than opaque alerts. XAI tools 

such as SHAP and LIME have been adapted for time-series and graph-structured grid data to provide local and global 

attributions. Fernandez et al. et al. [31] evaluated SHAP explanations for tree ensembles used in FDI detection, finding that 

attributions can help prioritize sensor checks. Gomez et al. et al. [32] argued for model-design choices that favor interpretability, 

such as sparse linear models or rule-sets, when rapid human-in-the-loop response is necessary. While these studies advance the 

interpretability agenda, they also reveal trade-offs: more interpretable models sometimes sacrifice detection accuracy and are 

vulnerable to sophisticated evasion that targets the interpretability mechanism. 

Data scarcity, privacy concerns, and distribution shifts motivate privacy-preserving and distributed learning approaches. 

Federated learning, differential privacy, and secure aggregation techniques have been proposed to enable collaborative model 

training across utilities without raw data sharing. Ahmed et al. et al. [33] evaluated federated anomaly detection prototypes on 

partitioned meter datasets, showing feasibility but noting communication and heterogeneity challenges. Khalid et al. et al. [34] 

explored differential privacy adaptations and reported degradation in detection sensitivity when strong privacy budgets are 

enforced. These efforts indicate promising directions for cross-organization collaboration, while also highlighting the technical 
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trade-offs between privacy, utility, and communication cost. Active defense and adaptive control strategies using reinforcement 

learning are an emerging area. RL methods have been applied for dynamic defense orchestration, attack mitigation sequencing, 

and automated restoration policies under compromised conditions. Tan et al. et al. [35] developed a Markov decision process 

framework that uses RL to select mitigation actions such as selective meter isolation and reconfiguration, showing improved 

resilience in simulation. Nevertheless, RL-based defenses require careful reward design and safe exploration guarantees to avoid 

unsafe control actions in real grids. The risk of undesirable emergent policies in safety-critical systems underscores the need for 

constraint-aware and formally verified RL methods. 

A broader observation from the related studies is that many contributions advance algorithmic performance but do not fully 

address system-level deployment concerns. Several surveys and empirical papers emphasize accuracy metrics, cross-validation, 

and small-scale testbeds while neglecting longitudinal evaluation, operational costs, and human factors. Comparative reviews by 

multiple authors [13], [14], [18] converge on shared limitations: inconsistent evaluation protocols, limited dataset diversity, 

insufficient attention to adversarial adaptivity, and weak emphasis on explainability and maintainability. Addressing these gaps 

requires coordinated efforts to build standardized benchmarks, promote reproducible testbeds, and integrate interdisciplinary 

perspectives spanning power systems engineering, cybersecurity, and human factors. Motivated by the preceding literature, this 

review synthesizes ML and DL contributions specifically targeted at FDI and emerging attacks, while emphasizing reproducibility, 

adversarial robustness, interpretability, and deployment readiness. The next sections describe our review methodology, selection 

criteria, and a structured taxonomy that groups studies by learning paradigm, attack type, and deployment layer. 

3. REVIEW METHODOLOGY 

A systematic review requires a rigorous and transparent methodology to ensure reproducibility, reliability, and relevance of the 

selected studies. This section outlines the procedures employed in this work, including the search strategy, inclusion and 

exclusion criteria, study selection, data extraction, and formulation of research questions. 

A. Search Strategy 

To identify literature on artificial intelligence in smart grid cybersecurity, a comprehensive search was conducted across major 

scholarly databases, including IEEE Xplore, ACM Digital Library, Scopus, Web of Science, ScienceDirect, and Google Scholar. 

Keywords and their combinations were employed to capture relevant studies, such as “AI in smart grid cybersecurity,” “machine 

learning in smart grid security,” “deep learning false data injection attacks,” “FDIA detection,” “cyber-physical system attacks,” 

and “emerging smart grid threats.” Boolean operators (AND/OR) and truncations were used to refine searches. Table 1 presents 

a summary of the keyword groups and combinations used. 

B. Inclusion and Exclusion Criteria 

To ensure the selection of high-quality and relevant studies, the following criteria were applied: 

Inclusion Criteria 

1. Peer-reviewed journal and conference articles published between 2010 and 2025. 

2. Studies written in English. 

3. Research focusing on AI, machine learning (ML), or deep learning (DL) applications in smart grid cybersecurity. 

4. Studies addressing at least one attack category, such as false data injection attacks (FDIAs), denial-of-service (DoS), 

replay attacks, or data integrity threats. 

5. Empirical or analytical studies presenting implementation, simulation, or evaluation results. 

 

Exclusion Criteria 

1. Articles not directly related to smart grid cybersecurity. 

2. Works are limited to cryptography or conventional intrusion detection methods without AI integration. 

3. Non-peer-reviewed sources such as white papers, blogs, or patents. 

4. Studies lacking sufficient technical details or experimental validation. 

 

C. Selection of the Study 

The selection process followed a multi-stage filtering approach. First, duplicate results across databases were removed. Titles and 

abstracts were then screened for relevance. Full-text reviews were performed to assess compliance with the inclusion and 

exclusion criteria. Out of an initial pool of 1,120 studies, 932 remained after duplicate removal. After abstract and title screening, 
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412 articles were eligible for full-text analysis. Following rigorous evaluation, 148 studies were deemed relevant and included in 

the final systematic review. The entire process adhered to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) guidelines to maintain transparency and rigor. 

D. Extraction of the Data 

For the selected studies, data extraction was carried out using a structured framework to ensure consistency. Each article was 

evaluated and tabulated based on: 

1. Reference and Year – bibliographic details. 

2. Research Focus – primary cybersecurity problem addressed (e.g., FDIA detection, anomaly detection, malware 

detection). 

3. AI/ML/DL Techniques – specific models and algorithms applied (e.g., SVM, random forest, CNN, RNN, hybrid 

approaches). 

4. Datasets/Simulation Environment – datasets used for evaluation, whether real-world smart grid data, simulated IEEE test 

systems, or synthetic datasets. 

5. Findings and Contributions – key contributions, performance metrics, and limitations identified. 

 

E. Research Questions (RQs) 

The study aims to systematically answer the following research questions: 

● RQ1: What are the prevailing AI, ML, and DL techniques used in smart grid cybersecurity, and how effective are they 

against various attack vectors? 

● RQ2: How have AI-based methods advanced the detection and mitigation of false data injection attacks in smart grids? 

● RQ3: What datasets, benchmarks, and test systems are commonly used, and what gaps exist in their applicability to 

real-world scenarios? 

● RQ4: What are the major challenges and limitations of applying AI in smart grid cybersecurity, including scalability, 

adaptability, and explainability? 

● RQ5: Which emerging threats in smart grids remain underexplored, and how can AI methodologies be extended to 

address them? 

● RQ6: How do hybrid approaches combining ML, DL, and domain knowledge compare with traditional AI methods in 

terms of accuracy, robustness, and computational efficiency? 

● RQ7: What promising future research directions exist for leveraging AI in enhancing the resilience of smart grid 

cybersecurity? 

Group Keywords/Terms Example Combinations 

Smart Grid “smart grid”, “power grid”, “electrical grid”, “cyber-physical system” “smart grid” AND 

“cybersecurity” 

Cybersecurity “cybersecurity”, “cyber attack”, “threat detection”, “anomaly detection”, 

“intrusion detection” 

“smart grid” AND “cyber 

attack” 

Attack Types “false data injection attack (FDIA)”, “denial of service (DoS)”, “replay 

attack”, “data integrity attack”, “malware” 

“FDIA” OR “false data 

injection” AND “smart grid” 

AI/ML/DL 

Techniques 

“artificial intelligence”, “machine learning”, “deep learning”, “neural 

network”, “support vector machine (SVM)”, “random forest”, “CNN”, 

“RNN”, “reinforcement learning” 

“machine learning” AND 

“FDIA detection” 

Application Focus “attack detection”, “attack mitigation”, “intrusion prevention”, 

“resilience”, “stability”, “robustness” 

“deep learning” AND 

“intrusion detection in smart 

grid” 

Benchmark/Datasets “IEEE test system”, “real-world dataset”, “simulation “IEEE 118 bus” AND “false 

data injection detection” 

Table 1. Keyword groups and combinations used in the search strategy 
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4. STUDY DISTRIBUTION ANALYSIS 

Before synthesizing the contributions of the reviewed studies toward AI-based cybersecurity in smart grids, it is essential to 

analyze how the final selected works are distributed across countries, years, keywords, research domains, and publication outlets. 

This distributional analysis provides insights into global research participation, temporal growth patterns, and dominant areas of 

focus within the field. 

A. Country-wise Distribution 

 

Figure 2 illustrates the geographic distribution of the reviewed studies. China emerges as the leading contributor with the 

highest number of publications on machine learning and deep learning approaches for smart grid cybersecurity. The United 

States follows closely, with substantial contributions addressing both theoretical advancements and industrial deployment 

challenges. India, the United Kingdom, Germany, and South Korea also demonstrate strong research activity. Meanwhile, 

contributions from developing regions such as Africa and parts of the Middle East remain limited, reflecting disparities in 

research capacity and access to experimental infrastructure. Collectively, the findings indicate that research in this area is 

concentrated in technologically advanced nations, though emerging economies are gradually contributing to the body of 

knowledge. 

 

Figure 2. Country-wise Distribution of Selected Studies 

B. Temporal Distribution 

 

 Figure 3 presents the year-wise publication trend of selected studies. Early contributions appeared around 2010, coinciding with 

the rise of false data injection attack research in smart grids. Publications grew steadily between 2014 and 2017 as machine 

learning methods such as support vector machines and random forests became widely applied. From 2018 onward, there has 

been a marked surge in deep learning-based studies, including convolutional and recurrent neural networks, reflecting the 

broader adoption of AI across cybersecurity domains. The peak in publications occurred between 2020 and 2023, suggesting 

accelerated interest driven by increasing cyberattack sophistication and the growing deployment of smart grid technologies 

worldwide. 
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Figure 3. Year-wise Publication Trend Of Selected Studies 

C. Keyword Distribution 

Keyword analysis, summarized in Figure 4, reveals recurring themes in the reviewed studies. Dominant terms include “false data 

injection,” “smart grid,” “machine learning,” “deep learning,” “intrusion detection,” and “resilience.” These reflect the centrality of 

attack detection and system robustness in this field. Less frequently used terms such as “adversarial learning,” “federated 

learning,” and “explainable AI” highlight emerging but underexplored areas that may define the next wave of research. The 

keyword landscape underscores that while detection and mitigation remain core, there is a gradual pivot toward transparency, 

scalability, and adaptability of AI models. 

 

 

Figure 4. Word cloud of the study keywords. 

D. Research Area Distribution 

 

Figure 5 depicts the distribution of studies by research domain. The largest cluster of contributions addresses false data injection 

attack detection, followed by general intrusion detection systems and anomaly detection frameworks. Other emerging 

categories include DoS detection, adversarial robustness, and privacy-preserving learning. Notably, adversarial AI in smart grid 

contexts remains sparsely explored, representing a critical research opportunity. The distribution confirms that while FDIA 

remains the most widely studied, broader classes of cyber-physical threats are beginning to attract scholarly attention. 
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Figure 5. Distribution of studies by research domain 

E. Publication Venues 

 

Figures 6 and 7 summarize the distribution of journal and conference publications. Approximately 65% of the reviewed studies 

were published in peer-reviewed journals, while 35% appeared in conference proceedings. IEEE, Elsevier, Springer, and MDPI 

dominate journal publications, reflecting their established presence in power systems and AI research. On the conference side, 

IEEE Xplore and ACM host the majority of contributions, particularly those emphasizing methodological innovations. The 

preference for journals suggests a maturing research domain where reproducibility and long-term scholarly impact are 

prioritized. 

 

Figure 6.  Distribution of journal and conference publications 
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Figure 7. Distribution of Journal Publications by Publisher 

 

5. AREAS OF AI IN SMART GRID CYBERSECURITY 

The application of artificial intelligence (AI) to smart grid cybersecurity has grown into a multifaceted domain addressing the 

evolving cyber-physical threats to modern energy systems. Given the increasing reliance on digitalization, interconnected 

devices, and distributed energy resources, the cybersecurity of smart grids requires adaptive, scalable, and intelligent solutions. 

Through a rigorous review and classification process, eleven critical areas of AI applications in smart grid cybersecurity were 

identified (see Fig. 9). These areas were selected based on scope, relevance, maturity of research, and their ability to reflect 

current and future challenges in the field. The categorization ensures focus and practical alignment with the most pressing issues 

while providing pathways for future investigations. The eleven areas include: intrusion detection systems (IDS), anomaly 

detection and prevention, malware detection and classification, privacy-preserving AI (blockchain-AI integration), adversarial 

machine learning defenses, secure data fusion and aggregation, false data injection attack (FDIA) detection, cyber-physical 

situational awareness, AI-based threat intelligence, trust and authentication mechanisms, and explainable AI (XAI) for decision 

transparency. Each area encompasses unique challenges and opportunities in defending the smart grid against cyber 

adversaries. By concentrating on these domains, researchers and practitioners can enhance resilience, maintain operational 

stability, and secure critical infrastructures. 

 

Figure 8. Categorization of AI in Smart Grid Cybersecurity Areas 

 

A. AI-BASED INTRUSION DETECTION SYSTEMS 

Intrusion Detection Systems (IDS) are one of the most critical defense mechanisms for safeguarding the cyber layer of smart 

grids. Their primary goal is to identify malicious activities or abnormal behaviors in communication channels, operational 

commands, and device interactions that could disrupt power delivery or compromise grid stability. While traditional signature-

based IDS relies on pre-defined attack patterns, it often fails to detect novel or zero-day attacks. AI-based IDS, in contrast, 

employs supervised, unsupervised, and hybrid machine learning models to dynamically adapt to new threats and enhance 
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detection accuracy, resilience, and scalability. Among the most widely used AI techniques in IDS are deep neural networks 

(DNNs), convolutional neural networks (CNNs), support vector machines (SVMs), and clustering algorithms. These approaches 

have demonstrated improved accuracy in classifying both known and unknown attack vectors in smart grid environments. For 

instance, a hybrid IDS combining clustering for anomaly detection with classification algorithms for labeling malicious events has 

achieved significantly lower false positive rates compared to conventional systems. Moreover, reinforcement learning is 

increasingly applied to optimize IDS decision-making in dynamic grid environments by adapting to evolving attacker strategies. 

A key innovation in recent years is the application of federated learning-based IDS frameworks, which enable multiple 

substations or distributed energy resources to collaboratively train models without sharing raw data. This approach preserves 

privacy and enhances resilience against attacks while maintaining model accuracy across distributed grid infrastructures. Studies 

also report the integration of blockchain with IDS, where blockchain ensures trust in shared security updates while AI models 

provide adaptive threat detection. Table 2 presents some of the main elements of current studies on AI-based IDS in smart grid 

cybersecurity. Various datasets, simulation platforms, and evaluation metrics have been utilized in this field. Benchmark datasets 

such as NSL-KDD, UNSW-NB15, CICIDS2017, and ToN-IoT are among the most commonly employed for IDS training and testing. 

Simulation tools like MATLAB/Simulink, OMNeT++, and GridSim have also been leveraged to emulate communication networks 

and grid operations under attack conditions. From Table 2, it is evident that diverse research efforts span from deep learning-

based feature extraction, federated model deployment, adversarial robustness testing, to cross-domain attack classification. 

Another crucial component of AI-driven IDS is explainability. Operators require not only accurate detections but also insights 

into why an event has been flagged as malicious. Recent work in explainable AI (XAI) applied to IDS has enabled human 

operators to interpret black-box models, fostering trust and supporting faster decision-making in real-world operations. 

Furthermore, resilient architectures capable of real-time processing have been proposed, using edge computing and lightweight 

AI models to reduce latency in high-frequency monitoring tasks. 

In addition to improving detection capabilities, research emphasizes IDS integration with broader smart grid defense strategies. 

For example, coupling IDS alerts with automated incident response systems can prevent cascading failures by isolating 

compromised nodes. Likewise, adaptive IDS leveraging online learning can continuously retrain models as new attack vectors 

emerge, ensuring relevance in dynamic threat landscapes. From a global perspective, significant contributions to AI-based IDS 

research have come from countries such as the United States, China, India, and European Union nations, which lead in 

developing both novel algorithms and real-world testbeds. The distribution of studies indicates a growing international 

consensus on the necessity of AI-enhanced IDS as the first line of defense for modern power infrastructures. Year-wise 

publication trends highlight rapid growth since 2016, coinciding with the increased deployment of smart meters, phasor 

measurement units (PMUs), and IoT devices in energy systems. Overall, AI-based IDS research reflects a strong convergence of 

machine learning innovation, real-time cyber defense, and privacy-preserving technologies. As the smart grid becomes more 

digitized and interconnected, future directions in IDS research are likely to focus on adversarial robustness, cross-layer defense 

integration, and scalable federated frameworks tailored for large, heterogeneous grid environments. 

Reference and Year Year Perform Work Dataset/Testing 

mechanism 

Finding and Contribution 

[36] Abou-Elasaad, M. M., 

Sayed, S. G., & El-Dakroury, M. 

M. (2024). Smart Grid intrusion 

detection system based on AI 

techniques. 

2024 Presents an AI-based IDS 

framework specifically 

tailored for smart grid 

cyberattack scenarios. 

Simulated power grid 

cyberattack scenarios 

and performance 

benchmarks were used 

for evaluation. 

Demonstrated improved 

detection accuracy of AI-based 

IDS approaches compared to 

legacy methods. 

[[37] AlHaddad, U., Basuhail, A., 

Khemakhem, M., Eassa, F. E., & 

Jambi, K. (2023). Ensemble 

Model Based on Hybrid Deep 

Learning for Intrusion Detection 

in Smart Grid Networks. 

2023 Proposes an ensemble 

hybrid deep learning 

approach for detecting 

network intrusions in 

smart grids. 

Network traffic datasets, 

including simulated 

attacks, facilitate 

detection performance 

measurement. 

The hybrid ensemble 

outperforms single ML models, 

achieving higher accuracy and 

robustness. 

[38] Sharma, A., et al. (2025). 

Artificial intelligence-

augmented smart grid 

architecture for secure and 

efficient EV charging 

2025 Discusses an AI-

augmented architecture 

for enhancing IDS 

security and operational 

efficiency of smart grid 

Case studies using 

smart grid testbed EV 

charging data and 

model simulations. 

Showed significant 

improvement in threat 

detection and management 

for EV charging stations. 
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infrastructure. EV charging. 

[39] Singh, A. R., et al. (2025). 

AI-enhanced smart grid 

framework for intrusion 

detection and mitigation in 

electric vehicle charging 

networks. 

2025 Presents an AI-driven 

end-to-end IDS and 

mitigation framework for 

smart grids serving EV 

infrastructures. 

Simulated grid network 

datasets, EV charging 

telemetry, and testbed-

based IDS evaluation. 

Integrated intrusion detection 

and mitigation to automate 

operator response. 

[40] Ghadi, Y. Y., et al. (2025). A 

hybrid AI-Blockchain security 

framework for smart grids. 

2025 Introduces a hybrid 

framework combining AI-

based IDS with 

blockchain for enhanced 

smart grid security. 

Evaluation of simulated 

smart grid and 

blockchain-secured 

communication 

datasets. 

Hybridization improves both 

detection rates and auditability 

for smart grid security events. 

[41] Islam, U., et al. (2025). AI-

enhanced intrusion detection in 

smart renewable energy grids: A 

multi-stage detection 

framework. 

2025 Proposes a multi-stage 

AI-driven IDS for 

intrusion detection in 

renewable energy grid 

systems. 

Multiple datasets from 

smart renewable grid 

simulations for layered 

detection evaluations. 

Multi-stage approach 

demonstrated higher attack 

detection and reduced false 

alarms. 

[42] Xie, R., Wang, B., & Xu, X. 

(2025). A novel federated deep 

learning for intrusion detection 

in smart grid cyber-physical 

systems. 

2025 Develops a federated 

deep learning 

architecture for 

collaboratively training 

IDS models across nodes. 

Partitioned testbed and 

benchmark datasets 

representing distributed 

smart grid nodes. 

Shows federated training 

preserves privacy and achieves 

near-centralized detection 

performance. 

[43] Verma, S., & Raj, A. (2025). 

A short report on deep learning 

synergy for decentralized smart 

grid cybersecurity. 

2025 Explores the use of 

decentralized AI for 

scalable intrusion 

detection in large-scale 

smart grids. 

Algorithms validated on 

distributed grid 

monitoring datasets 

and synthetic attack 

injections. 

Provides actionable strategies 

for deploying decentralized 

IDS to increase detection rates. 

[44] Kesavan, V. T., et al. (2025). 

Anomaly detection with the grid 

sentinel framework for electric 

car charging stations against 

intrusions. 

2025 Presents a specialized 

anomaly detection 

system to safeguard EV 

charging infrastructures 

within the smart grid. 

EV charging telemetry 

streams and simulated 

network attack 

injections were 

evaluated. 

System improves detection of 

targeted EV charging station 

threats. 

[45] Alsubaei, F. S., et al. (2025). 

Smart deep learning model for 

enhanced IoT intrusion 

detection using optimized 

preprocessing and 

hyperparameter tuning. 

2025 Optimizes deep learning 

preprocessing and 

hyperparameters for IoT-

centric smart grid IDS. 

Benchmark IoT and grid 

attack data used to 

validate optimized deep 

learning workflow. 

Hyperparameter optimization 

and tailored preprocessing 

boost IDS precision and 

efficiency. 

[46] Hasan, M. K., et al. (2024). A 

review of machine learning 

techniques for secure cyber-

physical systems in smart grid 

networks. 

2024 Reviews state-of-the-art 

ML techniques applied to 

IDS in smart grid CPS 

environments. 

Comprehensive analysis 

of published testbeds 

and benchmark 

datasets in the area. 

Synthesizes trends, challenges, 

evaluation practices, and 

potential solutions for IDS 

methods. 

[47] Duan, J. (2024). Deep 

learning anomaly detection in 

AI-powered intelligent power 

distribution systems. 

2024 Applies deep learning for 

real-time anomaly 

detection in smart grid 

power distribution. 

Real and synthetic 

power distribution 

telemetry is offered for 

model validation. 

Demonstrates improved real-

time anomaly alerts for 

potential cyberattacks. 

[48] Paul, B., et al. (2024). 

Potential smart grid 

vulnerabilities to cyber attacks: 

2024 Comprehensively 

analyzes vulnerabilities 

and possible IDS 

Meta-analysis of real-

world and simulated 

vulnerabilities, datasets, 

Highlights the most exploited 

attack vectors and effective AI-

driven IDS defenses. 
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A comprehensive analysis. solutions in smart grids. and case studies. 

[49] Sharma, A., et al. (2024). 

Anomaly detection in smart grid 

using optimized extreme 

gradient boosting classifier with 

SCADA system. 

2024 Applies XGBoost-based 

anomaly detection to 

SCADA smart grid 

systems. 

Supervised learning 

evaluations on SCADA-

like and synthetic smart 

grid datasets. 

Finds XGBoost offers high 

performance for anomaly 

detection in grid SCADA 

environments. 

[50] Sowmya, T., et al. (2023). A 

comprehensive review of AI AI-

based intrusion detection 

system for securing IoT. 

2023 Provides an overview and 

typology of AI-based IDS 

approaches for IoT-

enabled smart grids. 

Synthesis of published 

IoT testbeds and attack 

datasets used in IDS 

literature. 

Offers a taxonomy of AI IDS 

approaches and insights into 

performance benchmarking. 

[51] Mohsen, S., et al. (2023). 

Efficient Artificial Neural 

Network for Smart Grid Stability 

Prediction with Decentralized 

Smart Grid Control Systems. 

2023 Assesses ANNs for 

stability prediction and 

intrusion identification in 

smart control systems. 

Testbeds involving 

decentralized smart grid 

control and synthetic 

anomaly injection. 

Reports improved predictive 

ability and cyberattack 

detection from applied ANNs. 

[52] Kaur, R., et al. (2023). 

Artificial intelligence for 

cybersecurity: Literature review 

and future research directions. 

2023 Reviews broad AI 

applications to 

cybersecurity, with 

extensive smart grid IDS 

coverage. 

Meta-survey of IDS 

experimentations and 

datasets spanning smart 

grid applications. 

Establishes state-of-the-art, 

research gaps, and future IDS 

research directions. 

[53] Panthi, M., & Das, K. (2022). 

Intelligent Intrusion Detection 

Scheme for Smart Power Grid 

Systems using ensemble 

learning and hyperparameter 

optimization. 

2022 Advances in ensemble 

learning and HPO for IDS 

in smart grid power 

systems. 

Performance tested on 

public and simulated 

network intrusion 

datasets. 

Combined ensemble and HPO 

increases IDS accuracy and 

robustness across attack types. 

[54] Ndibwile, J. D., et al. (2022). 

Artificial Intelligence-Based 

Smart Grid Vulnerabilities and 

Potential Solutions. 

2022 Surveys AI-driven IDS 

countermeasures for 

current and emerging 

vulnerabilities. 

Meta-analysis of 

published datasets, 

testbeds, and 

simulations for smart 

grid security. 

Identifies security gaps and 

recommends novel AI 

methods for IDS research. 

[55] Corbett, C., Weber, C. M., & 

Anderson, T. R. (2024). Smart 

Grid Cybersecurity in the Age of 

Artificial Intelligence. 

2024 Reviews modern 

cybersecurity trends and 

AI-based IDS in power 

system infrastructure. 

Analysis based on 

published literature and 

use cases in real smart 

grid deployments. 

Assesses current readiness, 

adoption barriers, and future 

AI-IDS opportunities in smart 

grids. 

[56] Maiti, S., & Dey, S. (2024). 

Smart Grid Security: A Verified 

Deep Reinforcement Learning 

Framework to Counter Cyber-

Physical Attacks. 

2024 Proposes a deep 

reinforcement learning 

(DRL) based IDS validated 

in smart grid CPS. 

Benchmarked in a 

simulated smart grid 

CPS, using time-series 

telemetry and incident 

scenarios. 

DRL framework adaptively 

learns defense strategies for 

evolving threats. 

[57] Ji, C., et al. (2024). A hybrid 

evolutionary and machine 

learning approach for 

cybersecurity enhancement in 

Smart Grid Control Systems. 

2024 Presents a hybrid 

evolutionary/ML 

approach for smart grid 

control cybersecurity. 

Evaluation via synthetic 

and real-world testbed 

data mimicking cyber 

attack scenarios. 

Hybrid models have been 

shown to improve IDS 

resilience and reduce attack 

impacts. 

[58] Naeem, H., et al. (2025). 

Classification of intrusion 

cyber‐attacks in smart power 

grids using ensemble learning 

techniques. 

2025 Employs ensemble 

learning for cyberattack 

classification in smart 

grids. 

Benchmark smart grid 

datasets containing 

labeled cyberattack 

traces. 

Ensemble techniques boost 

accuracy in differentiating 

among attack types. 
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Table 2. Representative AI-based IDS Studies for Smart Grid Cybersecurity 

 

[59] Nemade, B., et al. (2024). 

Revolutionizing smart grid 

security: a holistic cyber defence 

framework with machine 

learning integration. 

2024 Proposes a holistic 

defense framework 

integrating various ML 

algorithms for IDS. 

Smart grid 

communication 

experiments with 

testbeds and synthetic 

intrusion data. 

A holistic solution 

demonstrated improved 

defense against sophisticated 

threats. 

[60] Alam, M. M., et al. (2025). 

Artificial intelligence integrated 

grid systems: Technologies, 

applications, and challenges. 

2025 Reviews AI integration 

challenges and 

applications, with 

dedicated IDS coverage. 

Survey of technology 

adoption in grid utilities 

and case studies of AI-

IDS deployments. 

Identifies adoption bottlenecks 

and open research problems 

for IDS. 

[61] Ferrag, M. A., Friha, O., 

Hamouda, D., Maglaras, L., & 

Janicke, H. (2022). Edge-IIoTset: 

A new comprehensive, realistic 

cybersecurity dataset of IoT and 

IIoT applications for centralized 

and federated learning. 

2022 Introduces Edge-IIoTset, 

a dataset supporting AI 

IDS for IoT/IIoT in smart 

grid contexts. 

Curated real-

world/realistic IIoT 

attack scenarios for 

model training/testing. 

The dataset supports the 

development/evaluation of ML 

IDS under distributed learning 

regimes. 

[62] Moustafa, N., & Slay, J. 

(2015). UNSW-NB15: a 

comprehensive data set for 

network intrusion detection 

systems. 

2015 Proposes UNSW-NB15 

benchmark dataset for 

evaluating smart grid IDS 

algorithms. 

The dataset contains 

labeled network traffic 

for diverse cyberattack 

detection research. 

Extensively used as a standard 

benchmark for smart grid 

intrusion algorithms. 

[63] Koroniotis, N., Moustafa, N., 

Sitnikova, E., & Turnbull, B. 

(2019). Towards the 

development of a realistic 

botnet dataset in the Internet of 

Things for network forensic 

analytics: Bot-IoT dataset. 

2019 Describes the creation of 

Bot-IoT, a realistic IoT-

suite dataset for intrusion 

and anomaly detection 

model benchmarking. 

Realistic IoT device 

emulation and synthetic 

botnet attack 

generation. 

Widely used for developing 

and testing IDS specific to 

IoT/smart grid environments. 

[64] Al-Qirim, N., et al. (2025). 

Cyber threat intelligence for 

smart grids using knowledge 

graphs and digital twins. 

2025 Applies AI-generated 

threat intelligence, 

knowledge graphs, and 

digital twins for smart 

grid protection. 

Evaluation using digital 

twin simulation 

environments, modeling 

grid threats. 

Demonstrated contextualized 

and actionable intelligence for 

IDS tuning. 

[65] Dayaratne, T. T., et al. 

(2023). Improving Cybersecurity 

Situational Awareness in Smart 

Grid Environments Through 

Security-Aware Data 

Provenance. 

2023 Focuses on security-

aware data provenance 

as a supportive layer for 

IDS situational awareness. 

Power grid data 

provenance 

explorations using 

actual grid operation 

logs/scenarios. 

Enhances overall grid 

protection by improving 

operator awareness and IDS 

response. 
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Figure 9. Year-wise distribution of AI-based IDS studies 

 

B. ANOMALY DETECTION AND PREVENTION 

Anomaly detection and prevention in smart grids play a central role in ensuring the reliability, security, and efficiency of modern 

power systems. Unlike traditional grid monitoring methods that rely on fixed thresholds or statistical averages, anomaly 

detection in smart grids must cope with the dynamic and heterogeneous nature of operational data streams, including voltage, 

frequency, current, and load profiles across distributed networks. The complexity of smart grids is further amplified by the 

integration of renewable energy sources, electric vehicles, and distributed energy resources, all of which introduce variability and 

potential vulnerabilities. Therefore, artificial intelligence approaches have become indispensable for identifying irregular patterns 

and preventing cascading failures. Machine learning techniques such as support vector machines have been widely used for 

anomaly detection due to their capability to handle high-dimensional data and separate abnormal patterns from normal 

operations with well-defined decision boundaries. These approaches have been successfully deployed for detecting voltage 

instabilities, load fluctuations, and maliciously altered signals. Similarly, autoencoders have gained prominence because of their 

ability to reconstruct normal operational states and flag deviations that may indicate anomalies. For instance, when trained on 

clean operational data, autoencoders can detect subtle irregularities in power flow or frequency variations that may be early 

indicators of equipment malfunction or cyber intrusion. 

Deep learning methods, particularly recurrent neural networks and long short-term memory (LSTM) architectures, have proven 

highly effective for temporal anomaly detection in smart grids. LSTM networks excel at capturing long-term dependencies in 

sequential data, enabling them to identify abnormal temporal correlations such as sudden frequency drops or load spikes that 

deviate from historical patterns. These models are crucial for anticipating time-dependent anomalies like those resulting from 

coordinated cyber-physical attacks or progressive equipment degradation. Convolutional neural networks have also been 

utilized to capture spatial correlations within grid sensor data, which makes them useful for detecting localized anomalies such 

as sudden outages or overloading in specific substations. Beyond detection, anomaly prevention mechanisms leverage AI-driven 

predictive analytics and reinforcement learning to propose corrective actions. Preventive strategies include adjusting load 

distribution, initiating demand-response mechanisms, or activating backup resources to stabilize the grid before anomalies 

escalate into large-scale disruptions. For example, reinforcement learning agents can be trained to optimize real-time control 

actions, balancing grid resilience against economic costs. In this way, anomaly prevention goes beyond passive monitoring and 

enables adaptive decision-making that strengthens operational reliability. 

Hybrid approaches that combine multiple AI models are increasingly being adopted to enhance robustness. For example, 

integrating statistical models with deep learning techniques provides a two-layer defense system, where statistical models serve 

as quick filters for potential anomalies and deep learning models perform more detailed verification. Ensemble learning 

frameworks also improve detection accuracy while reducing false alarm rates, which is critical to maintain operator trust in 

automated systems. Recent advances highlight the role of explainable AI in anomaly detection and prevention. Traditional black-

box models, while accurate, limit operators’ ability to understand why specific anomalies were flagged. Explainable approaches 

provide transparency by attributing anomalies to specific input features such as voltage fluctuations, irregular frequency shifts, or 

communication delays. This interpretability enhances operator confidence and supports regulatory compliance, particularly in 

critical infrastructure sectors. In addition, anomaly detection and prevention research is increasingly integrating federated 
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learning and edge intelligence to address privacy and scalability challenges. Federated learning enables multiple distributed grid 

operators to collaboratively train detection models without sharing raw data, ensuring privacy preservation while improving 

global model accuracy. Edge intelligence allows anomaly detection to occur closer to data sources, reducing latency and 

enabling rapid response in real time. Overall, anomaly detection and prevention in smart grids represent a multi-faceted 

challenge that requires combining advanced AI models with preventive strategies. By leveraging machine learning, deep 

learning, hybrid frameworks, and explainability, modern smart grids can achieve high detection accuracy, minimize false 

positives, and implement adaptive corrective actions that enhance resilience against both operational irregularities and malicious 

attacks. This evolution from simple detection toward proactive prevention reflects the future trajectory of smart grid 

cybersecurity and operational stability. 

Reference and Year Year Perform Work Dataset/Testing 

mechanism 

Finding and Contribution 

[66] Banik, S., Saha, S. K., Banik, T., 

& Hossain, S. M. M. (2023). 

Anomaly Detection Techniques in 

Smart Grid Systems: A Review. 

2023 Comprehensive review of 

anomaly detection 

techniques specifically 

applied to smart grid 

systems. 

Literature survey across 

various smart grid 

datasets, PMU 

measurements, and AMI 

data sources 

Systematizes anomaly 

detection methods for 

smart grids, identifies 

research gaps, and 

provides a taxonomy of 

techniques. 

[67]Rahman, H., Nazir, S., Anwer, 

F., & Siddique, F. (2023). Anomaly 

Detection in Smart Grid Networks 

Using Power Consumption Data. 

2023 Develops an anomaly 

detection framework using 

power consumption 

patterns in smart grid 

networks 

Smart grid power 

consumption datasets 

and synthetic anomaly 

injection scenarios 

Demonstrates effective 

detection of consumption 

anomalies and provides 

insights for grid operators. 

[68] Zhang, J. E., Wu, D., & Boulet, 

B. (2021). Time Series Anomaly 

Detection for Smart Grids: A 

Survey. 

2021 Survey of time-series 

anomaly detection 

methods applied to smart 

grid telemetry and 

monitoring 

Literature review across 

PMU, AMI, and building 

energy datasets; 

benchmark and real 

deployments cited 

Systematizes time-series 

anomaly methods 

(statistical, ML, DL), 

highlights dataset gaps 

and evaluation practices. 

[69] Di, L., & Ziliang, Q. (2023). 

Identification of Anomaly 

Detection in Power System State 

Estimation Based on Fuzzy C-

Means Algorithm. 

2023 Proposes a fuzzy C-means 

clustering approach for 

anomaly detection in 

power system state 

estimation 

Simulated power system 

state estimation data with 

injected anomalies and 

measurement errors 

Shows fuzzy clustering 

effectively identifies state 

estimation anomalies and 

improves system 

monitoring. 

[70] Omol, E., Wanjiku, M., & 

Kamau, S. (2024). Anomaly 

Detection In IoT Sensor Data 

Using Machine Learning 

Techniques For Predictive 

Maintenance In Smart Grids. 

2024 ML-based anomaly 

detection for IoT sensors in 

smart grids to enable 

predictive maintenance 

IoT sensor data from 

smart grid components, 

simulated fault 

conditions, and real 

telemetry streams 

Demonstrates ML 

techniques can predict 

equipment failures and 

reduce maintenance costs 

in smart grids. 

[71] Yu, L., Zhang, X., Wang, Y., & 

Liu, Z. (2025). Anomaly Detection 

of Cyber Attacks in Smart Grid 

Communications Using Heuristics 

and Deep Learning Methods. 

2025 A hybrid approach 

combining heuristics and 

deep learning for 

detecting cyber attacks in 

smart grid 

communications 

Network traffic datasets, 

cyber attack simulations, 

and smart grid 

communication protocol 

analysis 

Shows hybrid methods 

improve detection 

accuracy and reduce false 

positives for cyber attacks. 

[72] Noura, H. N., Salman, O., 

Chehab, A., & Couturier, R. 

2025 Comprehensive overview 

of advanced ML 

Survey of published 

datasets, testbeds, and 

Provides roadmap for ML 

applications, identifies 
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(2025). Advanced Machine 

Learning in Smart Grids: An 

overview of anomaly detection 

and cybersecurity applications. 

techniques for anomaly 

detection and 

cybersecurity in smart 

grids 

experimental setups 

across smart grid security 

research 

challenges, and suggests 

future research directions. 

[73] Farooq, A., Anwar, A., Iqbal, 

J., Rehman, A. U., & Shafiq, M. 

(2024). Securing the green grid: A 

data anomaly detection method 

for sustainable smart grid 

operations. 

2024 Data-driven anomaly 

detection method focused 

on sustainable and green 

smart grid operations. 

Sustainable energy 

datasets, renewable 

integration scenarios, and 

green grid operational 

data 

Demonstrates that 

anomaly detection can 

support sustainable grid 

operations and renewable 

energy integration. 

[74] Akagic, A., Kurtovic, H., & 

Hadziahmetovic, N. (2024). 

Enhancing smart grid resilience 

with deep learning-based 

anomaly detection and intelligent 

mitigation. 

2024 Deep learning framework 

for anomaly detection with 

integrated intelligent 

mitigation strategies 

Smart grid resilience 

scenarios, deep learning 

training datasets, and 

mitigation response 

evaluation 

Shows DL-based detection 

with automated mitigation 

enhances overall grid 

resilience and response 

time. 

[75] Jiang, X., et al. (2025). 

Research on Data Anomaly 

Detection and Repair Methods 

for Smart Meter Based on CNN-

LSTM Deep Learning Model. 

2025 CNN-LSTM hybrid model 

for detecting and repairing 

data anomalies in smart 

meter readings 

Smart meter data with 

synthetic and real 

anomalies, time-series 

validation, and repair 

effectiveness metrics 

Demonstrates a hybrid 

CNN-LSTM approach that 

effectively detects and 

repairs smart meter data 

anomalies. 

[76] Sharma, P., Gupta, R., & 

Singh, A. (2022). Anomaly 

Detection in Smart Meter Data 

for Preventing Power Outages 

and Wastage. 

2022 Smart meter anomaly 

detection system designed 

to prevent power outages 

and energy wastage 

Smart meter datasets, 

outage correlation 

analysis, and energy 

consumption pattern 

evaluation 

Shows meter-level 

anomaly detection can 

predict and prevent 

outages while reducing 

energy waste. 

[77] Qaddoori, S. L., Al-Nidawi, Y., 

& Taha, M. Q. (2023). An 

embedded and intelligent 

anomaly power consumption 

detection system using machine 

learning methods. 

2023 Embedded ML system for 

real-time anomaly 

detection in power 

consumption patterns 

Real-time power 

consumption data, 

embedded system 

performance metrics, and 

field deployment 

validation 

Demonstrates the 

feasibility of embedded 

ML systems for distributed 

anomaly detection in 

power grids. 

[78] Liu, X., Golab, L., Golab, W., 

Ilyas, I. F., & Jin, S. (2016). Smart 

Meter Data Analytics: Systems, 

Algorithms and Benchmarking. 

2016 Comprehensive framework 

for smart meter data 

analytics, including 

anomaly detection 

algorithms 

Large-scale smart meter 

datasets, benchmarking 

methodologies, and 

algorithm performance 

comparisons 

Establishes benchmarks 

for smart meter analytics 

and provides foundational 

algorithms for anomaly 

detection. 

[79] Kaleta, J., Dubinski, J., 

Wojdan, K., & Swirski, K. (2021). 

Detection of anomalous 

consumers based on smart meter 

data. 

2021 Method for detecting 

anomalous energy 

consumption patterns 

using smart meter data 

analysis 

Smart meter 

consumption datasets, 

consumer behavior 

analysis, and anomaly 

classification metrics 

Identifies consumer-level 

anomalies effectively and 

provides insights for 

demand-side 

management. 

[80] Qiao, L., Gao, W., Li, Y., Guo, 

X., Hu, P., & Hua, F. (2023). Smart 

Grid Outlier Detection Based on 

the Minorization–Maximization 

Algorithm. 

2023 Statistical approach using 

Minorization-Maximization 

algorithm for outlier 

detection in smart grids 

Smart grid operational 

data, statistical validation 

datasets, and outlier 

injection scenarios 

Shows MM algorithm 

provides robust outlier 

detection with theoretical 

guarantees and practical 

effectiveness. 
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[81] Raihan, A. S., & Ahmed, I. 

(2023). A Bi-LSTM Autoencoder 

Framework for Anomaly 

Detection – A Case Study of a 

Wind Power Dataset. 

2023 Bi-directional LSTM 

autoencoder for anomaly 

detection in renewable 

energy systems, 

specifically wind power 

Wind power generation 

datasets, time-series 

anomaly scenarios, and 

autoencoder 

reconstruction analysis 

Demonstrates that Bi-

LSTM autoencoders 

effectively detect 

anomalies in renewable 

energy time-series data. 

[82] Preeti, G., & Anitha Kumari, 

K. (2021). An Introductory Review 

Of Anomaly Detection Methods 

In Smart Grids. 

2021 Introductory survey of 

various anomaly detection 

methods applicable to 

smart grid systems 

Literature review of smart 

grid anomaly detection 

papers, datasets, and 

evaluation 

methodologies 

Provides a comprehensive 

introduction to anomaly 

detection in smart grids 

and identifies key research 

areas. 

[83] Shrestha, R., Mohammadi, 

M., Sinaei, S., Boddapati, V., 

Majidzadeh, K., & Babagoli, M. 

(2024). Anomaly detection based 

on LSTM and autoencoders for 

smart electrical grids. 

2024 LSTM and autoencoder-

based approach for 

anomaly detection in 

smart electrical grid 

systems 

Smart grid time-series 

data, LSTM training 

datasets, and 

autoencoder 

reconstruction error 

analysis 

Shows combined LSTM-

autoencoder approach 

improves anomaly 

detection accuracy in 

electrical grid data. 

[84] Song, Y., Kim, J., Park, S., & 

Lee, H. (2024). Unsupervised 

anomaly detection of industrial 

building energy consumption 

data using ensemble learning. 

2024 Unsupervised ensemble 

learning approach for 

detecting anomalies in 

industrial building energy 

consumption 

Industrial building energy 

datasets, ensemble 

model validation, and 

unsupervised learning 

evaluation 

Demonstrates that 

ensemble methods 

improve unsupervised 

anomaly detection in 

building energy systems. 

[85] Patil, R. S., Aware, M. V., & 

Junghare, A. S. (2025). 

Autoencoder-Based Anomaly 

Detection of Electricity Theft in 

Smart Grid Distribution Systems. 

2025 Autoencoder-based 

system for detecting 

electricity theft anomalies 

in smart grid distribution 

networks 

Electricity consumption 

patterns, theft simulation 

datasets, and distribution 

system monitoring data 

Shows autoencoders 

effectively detect 

electricity theft patterns 

and reduce revenue 

losses. 

[86] Duan, J. (2024). Deep 

learning anomaly detection in AI-

powered intelligent power 

distribution systems. 

2024 Deep learning framework 

for anomaly detection in 

AI-enhanced power 

distribution systems 

AI-powered distribution 

system data, deep 

learning model training, 

and intelligent system 

validation 

Demonstrates that deep 

learning enhances 

anomaly detection 

capabilities in intelligent 

distribution systems. 

[87] Al-Karkhi, M. I., Abbas, A. H., 

& Al-Sudani, A. A. (2024). 

Anomaly Detection in Electrical 

Systems Using Machine Learning: 

A Comprehensive Review. 

2024 Comprehensive review of 

machine learning 

approaches for anomaly 

detection in electrical 

systems. 

Survey of electrical 

system datasets, ML 

algorithm comparisons, 

and performance 

evaluation studies 

Provides a systematic 

comparison of ML 

methods and guidelines 

for selecting appropriate 

techniques. 

[88] Park, S. W., Ko, J., Baek, J., & 

Yoon, M. (2024). Anomaly 

Detection in Power Grids via 

Context-Agnostic Multivariate 

Time Series Analysis. 

2024 Context-agnostic approach 

for multivariate time series 

anomaly detection in 

power grids 

Multivariate power grid 

time series, context-

independent validation, 

and cross-system 

evaluation 

Shows context-agnostic 

methods provide robust 

anomaly detection across 

diverse power grid 

configurations. 

[89] Wang, B., Zhou, Y., Ge, L., & 

Kung, S. Y. (2025). Large-model-

based smart agent for time series 

anomaly detection in power 

systems. 

2025 Large language model-

based intelligent agent for 

time series anomaly 

detection in power 

systems. 

Power system time series 

data, large model training 

datasets, and agent-

based system evaluation 

Demonstrates that large 

models can create 

intelligent agents that 

improve time series 

anomaly detection. 
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Table 3. Representative Anomaly Detection and Prevention Studies for Smart Grids 

 

[90] Singh, J., Kumar, A., & 

Sharma, P. (2025). Anomaly 

Detection in Solar Power Systems 

Using Deep Learning for Smart 

Grid Cybersecurity. 

2025 Deep learning approach 

for anomaly detection in 

solar power systems within 

a smart grid cybersecurity 

context 

Solar power generation 

data, cybersecurity threat 

scenarios, and deep 

learning model validation 

Shows deep learning 

effectively detects 

anomalies in solar systems 

and enhances 

cybersecurity. 

[91] Li, X., et al. (2025). Anomaly 

detection method for power 

system information security using 

multimodal data fusion. 

2025 Multimodal data fusion 

approach for anomaly 

detection in power system 

information security 

Multi-source power 

system data, information 

security datasets, and 

fusion algorithm 

evaluation 

Demonstrates that 

multimodal fusion 

improves anomaly 

detection accuracy for 

power system security. 

[92] Chen, Y., Wang, H., & Zhang, 

L. (2025). Real-Time Anomaly 

Detection in Smart Grid Networks 

Using Deep Learning with Cross-

Domain Generalization. 

2025 Real-time deep learning 

system with cross-domain 

generalization for smart 

grid anomaly detection 

Real-time grid data 

streams, cross-domain 

validation datasets, and 

generalization 

performance metrics 

Shows deep learning with 

domain generalization 

enables effective real-time 

anomaly detection. 

[93] Asefi, S., Zhou, Y., Lyu, C., & 

Panteli, M. (2023). Anomaly 

detection and classification in 

power system state estimation: A 

comprehensive review. 

2023 Comprehensive review of 

anomaly detection and 

classification methods in 

power system state 

estimation 

State estimation datasets, 

classification 

performance analysis, 

and comparative 

evaluation studies 

Provides a systematic 

review of state estimation 

anomaly methods and 

identifies best practices. 

[94] Kumar, S., et al. (2025). 

Enhanced Data-Driven 

Framework for Anomaly 

Detection in IED-based Smart 

Grid Systems. 

2025 Enhanced data-driven 

framework for anomaly 

detection in Intelligent 

Electronic Device-based 

smart grids 

IED operational data, 

smart grid 

communication 

protocols, and framework 

validation experiments 

Demonstrates an 

enhanced framework that 

improves anomaly 

detection in IED-based 

smart grid systems. 

[95] Zhao, M., et al. (2025). 

Optimized Two-Stage Anomaly 

Detection and Recovery in Smart 

Grid Communication Networks. 

2025 Optimized a two-stage 

approach for anomaly 

detection and automated 

recovery in smart grid 

communications 

Smart grid 

communication network 

data, two-stage 

optimization validation, 

and recovery 

effectiveness metrics 

Shows two-stage 

approach shows both 

effective detection and 

automated recovery 

capabilities. 
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Figure 10. Year-wise distribution of anomaly detection/prevention studies 

 

C. MALWARE DETECTION AND CLASSIFICATION 

Malware poses one of the most persistent and disruptive threats to the cybersecurity of smart grids, primarily targeting smart 

meters, intelligent electronic devices (IEDs), and supervisory control and data acquisition (SCADA) systems. The integration of 

distributed energy resources, IoT devices, and advanced metering infrastructures expands the attack surface, creating 

opportunities for adversaries to launch malware campaigns that compromise grid stability, disrupt communication, or 

manipulate operational data. The complexity of smart grid architectures makes early detection and accurate classification of 

malware essential for safeguarding critical infrastructure. Artificial intelligence has transformed malware detection in smart grids 

by enabling automated analysis of large volumes of heterogeneous data. Traditional signature-based methods, while still 

valuable for detecting known malware, are increasingly limited against zero-day threats and polymorphic attacks. AI-driven 

techniques address these limitations by leveraging behavioral analysis, feature extraction, and machine learning classification to 

identify malicious code based on patterns rather than static signatures. For instance, binary classification algorithms such as 

support vector machines and random forests have been widely applied to detect malicious payloads embedded in firmware or 

data streams from smart devices. These methods provide a robust foundation for identifying attacks that attempt to masquerade 

as legitimate traffic. 

Deep learning approaches have further advanced malware detection by enabling automated feature learning from raw inputs, 

reducing dependence on handcrafted features. Convolutional neural networks (CNNs) have been used to detect malware by 

analyzing binary executables as grayscale images, where malicious code exhibits distinctive spatial structures. Similarly, recurrent 

neural networks (RNNs) and long short-term memory (LSTM) networks capture sequential dependencies in network traffic or 

system call traces, enabling precise detection of malware that evolves. These methods excel at uncovering temporal patterns that 

static analysis cannot reveal, making them highly effective for detecting sophisticated malware families. In addition to detection, 

malware classification has become a critical focus, as distinguishing between malware variants informs response strategies and 

containment measures. Multi-class classification techniques enable security systems to categorize malware into families based 

on behavioral or structural similarities. This classification allows operators to prioritize defensive measures, such as isolating 

infected nodes, blocking specific traffic flows, or updating intrusion prevention rules tailored to the malware type. Ensemble 

learning strategies, combining multiple classifiers, have demonstrated improved accuracy and resilience against evasion tactics 

commonly used by adversaries. 

Recent advancements emphasize the importance of modeling malware propagation across the communication topology of 

smart grids. Graph neural networks (GNNs) have emerged as a powerful tool for this task, as they naturally represent nodes 

(devices) and edges (communication links). By capturing relationships among interconnected components, GNNs can detect 

abnormal propagation dynamics indicative of malware spread. This approach not only identifies infected devices but also 

predicts which nodes are at risk, enabling proactive interventions that minimize cascading failures. Reinforcement learning is also 

being explored to optimize containment strategies in real time, guiding automated responses such as rerouting traffic, 

quarantining compromised devices, or dynamically adjusting access controls. Beyond detection and classification, explainable AI 

(XAI) is gaining traction to address the black-box nature of deep learning models in malware defense. Transparency in decision-
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making is critical for operators who must justify and trust automated security actions. XAI techniques highlight the features or 

traffic patterns that influenced a detection decision, allowing human operators to validate alerts, reduce false positives, and 

refine model training. This ensures a balance between high detection accuracy and operational trustworthiness in real-world 

deployments. 

The future of AI-based malware detection in smart grids is moving toward federated learning and privacy-preserving 

frameworks. Since data generated by smart meters and IEDs often contain sensitive consumer information, centralized training 

can raise privacy concerns. Federated learning addresses this by enabling local model training at edge devices, while sharing 

only model updates with central aggregators. This ensures collective intelligence against malware threats without exposing raw 

data. Additionally, integrating AI-driven malware detection with blockchain-based logging systems provides immutable evidence 

of detected attacks, enhancing accountability and post-incident forensics. Conclusively, AI-powered malware detection and 

classification systems provide a comprehensive defense framework for smart grids, capable of detecting, categorizing, and 

mitigating threats in real time. By leveraging machine learning, deep learning, graph-based models, and reinforcement learning, 

these systems ensure faster containment of malware and reduce the likelihood of widespread disruption. As research evolves, 

the convergence of advanced AI methods with explainability and privacy-preserving approaches will be essential to achieving 

resilient and trustworthy malware defense in critical energy infrastructures. 

Reference and Year Year Perform Work Dataset/Testing 

mechanism 

Finding and Contribution 

[96] Aziz, S., Irshad, M., 

Haider, S. A., Wu, J., Deng, D. 

N., & Ahmad, S. (2022). 

Protection of a smart grid 

with the detection of cyber-

malware attacks using 

efficient and novel machine 

learning models. 

2022 Develops efficient ML models 

for detecting cyber-malware 

attacks in smart grid 

infrastructure protection 

Smart grid simulation 

datasets, malware attack 

scenarios, and ML model 

performance benchmarks 

Demonstrates novel ML 

approaches achieve high 

accuracy in malware 

detection while 

maintaining computational 

efficiency. 

[97] Yeboah-Ofori, A. (2020). 

Classification of malware 

attacks using machine 

learning in decision tree. 

2020 Proposes decision tree-based 

machine learning approach 

for classifying different types 

of malware attacks 

Malware samples dataset, 

attack classification 

scenarios, and decision 

tree algorithm validation 

Shows decision tree 

algorithms effectively 

classify malware types with 

interpretable decision 

paths for security analysts. 

[98] Ghafoor, M. I., Bhatti, A., 

Ullah, I., & Ahmad, F. (2022). 

Cyber-Malware Defense for 

Smart Grids Using Machine 

Learning Techniques. 

2022 Comprehensive ML-based 

defense framework 

specifically designed for 

cyber-malware threats in 

smart grids 

Smart grid 

communication datasets, 

cyber-malware injection 

scenarios, and defense 

mechanism evaluation 

Develops robust ML 

defense mechanisms that 

significantly reduce 

malware success rates in 

smart grid environments. 

[99] Tightiz, L., Yang, H., & 

Piran, M. J. (2024). 

Implementing AI Solutions 

for Advanced Cyber-Attack 

Detection in Smart Grid 

Systems. 

2024 Advanced AI implementation 

for detecting sophisticated 

cyber-attacks including 

malware in smart grid 

systems 

Multi-layer smart grid 

testbeds, advanced 

persistent threat 

simulations, and AI model 

validation 

AI solutions provide 

superior detection 

capabilities for advanced 

malware and sophisticated 

cyber-attack patterns. 

[100] Wang, Z., Li, Y., Chen, X., 

& Zhang, H. (2022). Deep 

Learning Based Malware 

Traffic Classification for 

Power Internet of Things. 

2022 Deep learning approach for 

classifying malware traffic in 

Power IoT environments 

within smart grids 

Power IoT network traffic 

datasets, malware traffic 

patterns, and deep 

learning model training 

Deep learning models 

accurately classify malware 

traffic patterns specific to 

Power IoT systems. 

[101] Paul, B., Bhattacharya, 

P., Kishore, A., Anand, D., 

Tiwari, A. K., & Singh, H. 

(2024). Potential smart grid 

vulnerabilities to cyber 

2024 Comprehensive analysis of 

smart grid vulnerabilities with 

focus on malware and cyber 

attack vectors 

Vulnerability assessment 

datasets, attack vector 

analysis, and 

comprehensive security 

Identifies critical smart grid 

vulnerabilities and provides 

systematic analysis of 

malware attack pathways. 
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attacks: A comprehensive 

analysis. 

evaluation 

[102] Krause, T., Ernst, R., 

Klaer, B., Hacker, I., & Henze, 

M. (2021). Cybersecurity in 

Power Grids: Challenges and 

Opportunities. 

2021 Comprehensive study of 

cybersecurity challenges 

including malware threats in 

power grid systems 

Real-world power grid 

security incidents, threat 

landscape analysis, and 

security framework 

evaluation 

Systematizes cybersecurity 

challenges and provides 

roadmap for addressing 

malware and other cyber 

threats. 

[103] Ozen, A. (2017). 

Malware in smart grid. 

2017 Comprehensive thesis 

examining malware threats 

specific to smart grid 

environments and 

countermeasures 

Smart grid malware case 

studies, attack simulation 

environments, and 

defense mechanism 

analysis 

Provides foundational 

understanding of smart 

grid malware landscape 

and effective 

countermeasure strategies. 

[104] Ijeh, V. O., & Morsi, W. 

G. (2024). Smart grid 

cyberattack types 

classification: A fine tree 

bagging-based ensemble 

learning approach with 

feature selection. 

2024 Ensemble learning approach 

using fine tree bagging for 

classifying various smart grid 

cyberattack types 

Cyberattack datasets with 

feature selection analysis, 

ensemble model 

validation, and 

classification performance 

metrics 

Fine tree bagging 

ensemble with feature 

selection achieves superior 

classification accuracy for 

smart grid attacks. 

[105] Nemade, B., Shah, N., 

Bisen, D., & Chandel, A. 

(2024). Revolutionizing smart 

grid security: a holistic cyber 

defence framework with 

machine learning integration. 

2024 Holistic cyber defense 

framework integrating ML for 

comprehensive smart grid 

security including malware 

detection 

Multi-threat simulation 

environments, ML 

integration testbeds, and 

holistic security 

framework evaluation 

Holistic ML-integrated 

framework provides 

comprehensive protection 

against diverse cyber 

threats including malware. 

[106] Chen, L., Wang, S., Liu, 

Y., & Zhang, K. (2025). AI-

based threat detection in 

critical infrastructure: 

Applications for U.S. smart 

grids. 

2025 AI-based threat detection 

system specifically designed 

for critical infrastructure 

protection in smart grids 

U.S. smart grid 

infrastructure datasets, 

critical threat scenarios, 

and AI detection model 

validation 

AI-based detection 

systems effectively identify 

and mitigate threats to 

critical smart grid 

infrastructure. 

[107] Sahani, N., Zhu, R., Cho, 

J. H., & Liu, C. C. (2023). 

Machine Learning-based 

Intrusion Detection for Smart 

Grid Computing: A Survey. 

2023 Comprehensive survey of 

ML-based intrusion detection 

methods for smart grid 

computing environments 

Survey of published 

datasets, intrusion 

detection benchmarks, 

and comparative analysis 

of ML approaches 

Systematizes ML-based 

intrusion detection 

landscape and identifies 

research gaps in smart grid 

security. 

[108] Liu, H., & Zhang, M. 

(2024). A single-class attack 

detection algorithm for smart 

grid AGC system based on 

improved support vector 

machine. 

2024 Single-class SVM-based 

attack detection algorithm 

specifically for smart grid 

Automatic Generation 

Control systems 

AGC system operational 

data, single-class attack 

scenarios, and improved 

SVM algorithm validation 

Improved SVM algorithm 

effectively detects attacks 

in AGC systems with 

minimal false positive 

rates. 

[109] Kumar, S., Singh, R., & 

Gupta, A. (2024). Cyber 

Security of Smart-Grid 

Frequency Control: A Review 

and Vulnerability Assessment 

Framework. 

2024 Comprehensive review and 

vulnerability assessment 

framework for smart grid 

frequency control 

cybersecurity 

Frequency control system 

datasets, vulnerability 

assessment metrics, and 

comprehensive security 

evaluation 

Provides systematic 

vulnerability assessment 

framework highlighting 

critical security gaps in 

frequency control. 
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[110] Hamdi, N., Ayed, S., 

Chaari, L., & Ltifi, H. (2025). 

Enhancing Cybersecurity in 

Smart Grid: A Review of 

Machine Learning-Based 

Attack Detection Methods. 

2025 Review of ML-based attack 

detection methods with 

focus on enhancing overall 

smart grid cybersecurity 

ML attack detection 

literature review, 

comparative analysis 

datasets, and 

performance evaluation 

metrics 

Identifies most effective 

ML approaches for attack 

detection and provides 

enhancement 

recommendations. 

[111] Ahmad, T., Zhang, H., & 

Yan, B. (2021). A review on 

renewable energy and 

electricity requirement 

forecasting models for smart 

grid and buildings. 

2021 Review of forecasting models 

for renewable energy 

systems with implications for 

smart grid security 

Renewable energy 

forecasting datasets, 

smart grid integration 

scenarios, and forecasting 

model validation 

Forecasting models 

support secure smart grid 

operations and help 

prevent security 

vulnerabilities. 

[112] Ravin, D., Kumar, M. S., 

& Patel, R. (2025). Malware 

Classification Using Machine 

Learning and Deep Learning: 

A Comprehensive Approach. 

2025 Comprehensive approach to 

malware classification using 

both traditional ML and deep 

learning techniques 

Large-scale malware 

datasets, classification 

algorithm benchmarks, 

and comprehensive 

evaluation metrics 

Combined ML and DL 

approaches achieve state-

of-the-art performance in 

malware classification 

tasks. 

[113] Farfoura, M. E., Barakat, 

M., Al-Dmour, J. A., & Al-

Qutayri, M. (2025). A novel 

lightweight Machine Learning 

framework for IoT malware 

detection with limited 

computing burden. 

2025 Lightweight ML framework 

for IoT malware detection 

designed for resource-

constrained smart grid 

devices 

IoT malware datasets, 

resource constraint 

simulations, and 

lightweight algorithm 

performance evaluation 

Lightweight framework 

maintains high detection 

accuracy while minimizing 

computational resource 

requirements. 

[114] Johnson, R., Smith, K., & 

Williams, D. (2024). 

Cybersecurity in Critical 

Infrastructure: Protecting 

Power Grids and Smart Grids. 

2024 Comprehensive analysis of 

cybersecurity measures for 

protecting critical power grid 

and smart grid infrastructure 

Critical infrastructure 

security case studies, 

threat assessment data, 

and protection measure 

evaluation 

Provides practical 

cybersecurity strategies for 

protecting critical power 

and smart grid 

infrastructure. 

[115] Alanazi, M., Almaiah, M. 

A., & Al-Hadhrami, T. (2023). 

SCADA vulnerabilities and 

attacks: A review of the state-

of-the-art and 

countermeasures. 

2023 Comprehensive review of 

SCADA system vulnerabilities 

with focus on attacks and 

countermeasure strategies 

SCADA vulnerability 

databases, attack scenario 

analysis, and 

countermeasure 

effectiveness evaluation 

Systematizes SCADA 

vulnerabilities and provides 

comprehensive 

countermeasure 

recommendations for 

protection. 

[116] Prudhvi, B., Sekhar, T. C., 

& Kumar, M. S. (2025). Real-

Time Cyberattack Detection 

for SCADA in Power System 

Based on Deep Learning 

Approach. 

2025 Real-time deep learning 

approach for detecting 

cyberattacks in SCADA-based 

power systems 

Real-time SCADA 

datasets, cyberattack 

simulation scenarios, and 

deep learning model 

performance evaluation 

Deep learning approach 

enables real-time 

cyberattack detection in 

SCADA systems with high 

accuracy. 

[117] Zhang, Y., Wang, L., Sun, 

W., Green, R. C., & Alam, M. 

(2011). Distributed intrusion 

detection system in a multi-

layer network architecture of 

smart grids. 

2011 Distributed intrusion 

detection system designed 

for multi-layer smart grid 

network architectures 

Multi-layer smart grid 

network simulations, 

distributed detection 

scenarios, and system 

performance metrics 

Distributed IDS 

architecture provides 

comprehensive intrusion 

detection across smart grid 

network layers. 

[118] Musleh, A. S., Chen, G., 

& Dong, Z. Y. (2019). A survey 

on the detection algorithms 

2019 Survey of detection 

algorithms specifically 

focused on false data 

False data injection attack 

datasets, detection 

algorithm benchmarks, 

Comprehensive survey 

identifies most effective 

detection algorithms and 
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for false data injection attacks 

in smart grids. 

injection attacks in smart grid 

systems 

and comparative 

performance analysis 

highlights research 

directions. 

[119] Liang, G., Weller, S. R., 

Zhao, J., Luo, F., & Dong, Z. Y. 

(2017). The 2015 Ukraine 

blackout: Implications for 

false data injection attacks. 

2017 Analysis of 2015 Ukraine 

blackout with focus on false 

data injection attack 

implications for smart grids 

Ukraine blackout incident 

analysis, attack vector 

reconstruction, and 

impact assessment data 

Real-world incident 

analysis provides critical 

insights into false data 

injection attack impacts 

and prevention. 

[120] Hong, J., Liu, C. C., & 

Govindarasu, M. (2014). 

Integrated anomaly detection 

for cyber security of the 

substations. 

2014 Integrated anomaly 

detection system specifically 

designed for substation 

cybersecurity applications 

Substation operational 

data, anomaly detection 

scenarios, and integrated 

system performance 

evaluation 

Integrated approach 

provides comprehensive 

anomaly detection 

capabilities for substation 

cybersecurity. 

[121] Pan, S., Morris, T., & 

Adhikari, U. (2015). 

Developing a Hybrid 

Intrusion Detection System 

Using Data Mining for Power 

Systems. 

2015 Hybrid intrusion detection 

system using data mining 

techniques for power system 

security applications 

Power system operational 

datasets, data mining 

algorithm evaluation, and 

hybrid system 

performance metrics 

Hybrid data mining 

approach improves 

intrusion detection 

accuracy and reduces false 

alarm rates. 

[122] Stellios, I., 

Kotzanikolaou, P., Psarakis, 

M., Alcaraz, C., & Lopez, J. 

(2018). A survey of iot-

enabled cyberattacks: 

Assessing attack paths to 

critical infrastructures and 

services. 

2018 Comprehensive survey of 

IoT-enabled cyberattacks 

with focus on critical 

infrastructure attack 

pathways 

IoT attack vector analysis, 

critical infrastructure 

vulnerability assessment, 

and attack path modeling 

Systematizes IoT-enabled 

attack pathways and 

provides framework for 

critical infrastructure 

protection. 

[123] Deng, R., Xiao, G., Lu, R., 

Liang, H., & Vasilakos, A. V. 

(2017). False data injection on 

state estimation in power 

systems—Attacks, impacts, 

and defense: A survey. 

2017 Comprehensive survey of 

false data injection attacks 

on power system state 

estimation with defense 

strategies 

State estimation datasets, 

false data injection 

scenarios, and defense 

mechanism evaluation 

Provides systematic 

analysis of false data 

injection attacks and 

effective defense 

mechanism strategies. 

[124] Kimani, K., Oduol, V., & 

Langat, K. (2019). Cyber 

security challenges for IoT-

based smart grid networks. 

2019 Analysis of cybersecurity 

challenges specific to IoT-

based smart grid network 

implementations 

IoT-based smart grid 

datasets, cybersecurity 

challenge assessment, 

and threat landscape 

analysis 

Identifies key cybersecurity 

challenges for IoT-based 

smart grids and provides 

mitigation strategies. 

[125] Appiah-Kubi, P., & 

Malick, I. H. (2023). Machine 

learning algorithms and their 

applications in classifying 

cyber-attacks on a smart grid 

network. 

2023 Application of various ML 

algorithms for classifying 

different types of cyber-

attacks in smart grid 

networks 

Smart grid cyberattack 

datasets, ML algorithm 

comparative analysis, and 

classification performance 

evaluation 

Comparative analysis 

identifies most effective 

ML algorithms for smart 

grid cyberattack 

classification tasks. 

[337] Hoq Khan, M. A. U., 

Islam, Z., Ahmed, I., Rabbi, M. 

M. K., Rahman Anonna, F., 

Zeeshan, F., ... & Alamin 

Sadnan, G. M. (2025). Secure 

Energy Transactions Using 

2025 Develops a hybrid 

blockchain-AI system for 

secure peer-to-peer energy 

transactions with real-time 

fraud detection using 

machine learning models 

Over 1.2 million 

anonymized energy 

transaction records from 

simulated P2P energy 

exchange networks 

emulating real-life 

XGBoost achieved the 

highest accuracy (35.9%) 

for fraud detection; 

blockchain-AI integration 

provides tamper-resistant 

transaction logging with 
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Blockchain Leveraging AI for 

Fraud Detection and Energy 

Market Stability. 

(Random Forest, Logistic 

Regression, XGBoost) 

integrated with Ethereum 

smart contracts. 

blockchain-based 

American microgrids (LO3 

Energy and Grid+ Labs) 

real-time anomaly 

detection. 

 

Table 4. Representative Malware Detection and Classification Studies for Smart Grids 

 

 

Figure  11. Year-wise distribution of malware detection/classification studies 

 

D. PRIVACY-PRESERVING AI 

The integration of artificial intelligence in the energy sector relies heavily on large-scale data collection from smart meters, 

distributed generation units, and demand-response programs. While such data provides valuable insights into grid behavior and 

consumer patterns, it also poses profound privacy challenges. Detailed energy consumption records, for instance, can reveal 

household occupancy patterns, appliance usage, and even lifestyle habits, creating risks of misuse or unauthorized surveillance if 

not adequately protected. Addressing these challenges requires the development and deployment of privacy-preserving AI 

techniques that enable data-driven innovation while maintaining robust confidentiality safeguards. A key approach in this field is 

homomorphic encryption, which enables computations to be performed directly on encrypted data without needing decryption. 

This method allows utilities and grid operators to analyze sensitive energy consumption patterns while ensuring that the raw 

data remains hidden. For example, encrypted load profiles can be used to train demand-forecasting models without exposing 

individual household details, providing a secure framework for collaborative analytics across multiple stakeholders. Although 

promising, homomorphic encryption remains computationally intensive, and ongoing research focuses on optimizing its 

performance for real-time energy applications. 

Differential privacy is another critical technique, designed to inject statistical noise into datasets or query responses to obscure 

individual contributions. When applied to smart meter data or distributed generation records, differential privacy ensures that 

the inclusion or exclusion of a single household’s data does not significantly impact the analysis outcome. This technique is 

particularly relevant in demand-response programs where aggregated load flexibility insights must be shared without exposing 

identifiable consumption behaviors. Striking the right balance between data utility and privacy guarantees remains an open 

research problem, as excessive noise can degrade the predictive accuracy of AI models. In addition, federated learning has 

emerged as a powerful paradigm for privacy-preserving collaboration. Instead of centralizing raw data, federated learning 

enables distributed entities, such as residential households, microgrids, or regional utilities, to train shared AI models locally. 

Only model parameters or updates are exchanged, significantly reducing the risk of data leakage. This decentralized approach is 

well-suited for energy systems where stakeholders may be reluctant or legally restricted from sharing sensitive consumption 

data. However, federated learning introduces new vulnerabilities, such as model poisoning and inference attacks, which require 

complementary security mechanisms, including secure aggregation and anomaly detection. 
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Ongoing research in privacy-preserving AI emphasizes the need to balance privacy with model utility. Energy providers must 

ensure that data protection measures do not compromise the effectiveness of demand forecasting, grid stability analysis, or 

distributed energy resource optimization. Multi-layered frameworks that combine homomorphic encryption, differential privacy, 

and federated learning are gaining traction as robust solutions for safeguarding consumer privacy while enabling collaborative 

analytics. In the context of increasing regulatory scrutiny and consumer awareness, advancing these privacy-preserving AI 

methods is critical for ensuring both trust and efficiency in the evolving energy landscape. 

Reference and Year Year Perform Work Dataset/Testing 

mechanism 

Finding and Contribution  

[126] Bibi, H., Khan, A. A., Ahmad, 

J., Iqbal, M. M., & Arshad, H. 

(2025). A comprehensive survey on 

privacy-preserving techniques in 

smart grid systems: Challenges, 

solutions, and future directions. 

2025 Comprehensive survey 

of privacy-preserving AI 

techniques in smart 

grids, covering key 

challenges and future 

research directions 

Systematic review of 

privacy-preserving 

methods (federated 

learning, differential 

privacy, MPC) across 

diverse smart grid 

datasets and use cases 

Provides an exhaustive 

taxonomy, compares 

solution performance, 

and outlines open 

challenges for scalable 

privacy-preserving AI in 

smart grids. 

 

[127] Ali, W., Din, I. U., Almogren, 

A., & Kim, B. S. (2022). A Novel 

Privacy Preserving Scheme for 

Smart Grid-Based Home Area 

Networks. 

2022 Proposes a home area 

network privacy scheme 

leveraging lightweight 

cryptographic 

techniques 

Simulated HAN datasets 

and privacy threat 

models; performance 

measured on latency and 

confidentiality metrics 

Demonstrates strong 

data confidentiality with 

minimal communication 

overhead, suitable for 

resource-constrained 

HAN devices. 

 

[128] Deng, S., Xie, K., Li, K., Zhou, 

J., & He, D. (2024). Data-driven and 

privacy-preserving risk assessment 

method for power grid operators. 

2024 Introduces a differential 

privacy–based risk 

assessment model for 

operational decision 

support 

Power system 

operational logs, attack 

simulation datasets, and 

DP noise calibration 

experiments 

Achieves accurate risk 

estimates while 

mathematically 

bounding privacy 

leakage for sensitive 

operational data. 

 

[129] Lin, Y. H., Pan, T. H., Hsieh, M. 

Y., & Lai, Y. C. (2024). A privacy-

preserving distributed energy 

management framework based on 

vertical federated learning for 

smart data cleaning. 

2024 Vertical federated 

learning framework for 

collaborative energy 

management without 

raw data sharing 

Multi-owner smart meter 

datasets partitioned 

vertically; FL training 

rounds benchmarked 

under privacy constraints. 

Maintains model 

accuracy comparable to 

centralized training while 

preserving each utility’s 

data privacy. 

 

[130] Rajca, M. (2024). Privacy Risks 

and Regulatory Challenges in 

Smart Grids and Renewable Energy 

Systems: A Comprehensive 

Analysis. 

2024 Examines data privacy 

risks and regulatory 

frameworks affecting 

smart grid deployments 

Literature and policy 

document review across 

GDPR, NERC CIPv5, and 

national regulations 

Identifies governance 

gaps, recommends policy 

harmonization, and 

outlines technical 

controls for compliance. 

 

[131] Zhang, Z., Rath, S., Xu, J., & 

Xiao, T. (2024). Federated Learning 

for Smart Grid: A Survey on 

Applications and Potential 

Vulnerabilities. 

2024 Survey of federated 

learning applications in 

smart grids, plus analysis 

of associated privacy 

attacks 

Review of FL-based load 

forecasting, anomaly 

detection, and energy 

trading use cases; threat 

modeling 

Catalogs FL applications, 

highlights attack vectors 

(inference, poisoning), 

and proposes mitigation 

strategies. 

 

[132] Hafeez, K., Armghan, A., 

Alenezi, F., Asif, M., Ahmad, J., & 

Ahmad, A. (2023). E-DPNCT: an 

enhanced attack resilient 

2023 Differential privacy 

model with noise 

cancellation to protect 

location and energy 

Public smart meter 

datasets, DP budget 

tuning experiments, and 

noise cancellation 

Achieves improved 

utility–privacy trade-off 

by canceling redundant 

noise, retaining high data 
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differential privacy model with 

noise cancellation technique for 

location and energy data privacy in 

smart grid. 

usage data efficacy tests accuracy. 

[133] Guo, W., Zhang, B., Li, C., & 

Wang, X. (2025). Privacy‐Preserving 

Real‐Time Smart Grid Topology 

Analysis Using Graph Neural 

Networks with Differential Privacy. 

2025 Graph neural network 

framework with DP to 

analyze grid topology in 

real time without 

exposing the structure 

Synthetic grid topology 

graphs and real 

operational data; GNN 

accuracy measured under 

DP constraints 

Enables topology 

insights with provable DP 

guarantees, supporting 

secure real-time grid 

monitoring. 

 

[134] Wen, H., Zhang, J., Meng, Q., 

Chen, R., & Li, J. (2025). A privacy-

preserving heterogeneous 

federated learning framework for 

electricity theft detection in smart 

grids. 

2025 Heterogeneous FL 

framework 

accommodating diverse 

device capabilities for 

theft detection 

Regional utility datasets, 

heterogeneous model 

aggregation experiments, 

and privacy–utility 

metrics 

Shows robust theft 

detection performance 

and fairness across 

participants with varying 

data distributions. 

 

[135] Singh, P., Nayyar, A., Kaur, A., 

& Ghosh, U. (2021). Blockchain and 

homomorphic encryption-based 

privacy preservation data 

aggregation model for smart grid. 

2021 Combines blockchain 

logging with HE-based 

aggregation for secure 

meter data collection 

Real-world smart meter 

logs, HE performance 

benchmarks, and 

blockchain ledger 

simulations. 

Ensures aggregated 

billing accuracy without 

revealing individual 

consumption; provides 

an immutable audit trail. 

 

[136] Marandia, A. J., Aranha, D. F., 

de Souza, C. P., & Simplicio, M. A. 

(2024). Lattice-Based 

Homomorphic Encryption For 

Privacy-Preserving Smart Grid Data 

Collection and Analysis. 

2024 Lattice-based HE 

scheme for encrypted 

smart grid data analytics 

Encrypted load profiles, 

HE operation 

performance tests, and 

analytics accuracy 

evaluation 

Demonstrates practical 

HE performance for grid 

analytics with acceptable 

computational overhead. 

 

[137] Abreu, Z., Canedo, P., Bianchi, 

A., Ribeiro, M. V., & Wille, E. C. 

(2022). Privacy protection in smart 

meters using homomorphic 

encryption: A survey. 

2022 Survey of HE 

approaches for secure 

meter data aggregation 

and analytics 

Review of HE libraries, 

performance 

benchmarks, and 

application case studies 

Synthesizes HE state of 

the art, identifies 

performance bottlenecks, 

and suggests 

optimization directions. 

 

[138] Xu, W., Zhang, J., Huang, S., 

Luo, C., & Li, W. (2023). A Privacy-

Preserving Framework Using 

Homomorphic Encryption for 

Smart Metering Systems with Trust 

Boundaries. 

2023 HE framework enforces 

trust boundaries 

between utilities and 

data processors. 

Smart meter traces, trust 

region definitions, and 

HE protocol validation 

Validates cross-

organization analytics 

while enforcing fine-

grained access control 

via HE. 

 

[139] Yang, Y., Zhang, X., Zhu, Z., & 

Lei, J. (2016). Research on 

Homomorphic Encryption 

Clustering Algorithm for Smart 

Grid Privacy Preserving. 

2016 Clustering algorithm 

using HE to preserve 

privacy during data 

segmentation 

Metering datasets, 

clustering quality, and HE 

performance 

comparisons 

Maintains clustering 

accuracy with encrypted 

data, enabling privacy-

aware demand 

segmentation. 

 

[140] Thoma, C., Cui, T., & 

Franchetti, F. (2012). Secure 

Multiparty Computation-Based 

Privacy-Preserving Smart Metering 

System. 

2012 MPC protocol for secure 

joint computation of 

aggregated meter data 

Field trial data, MPC 

protocol overhead 

benchmarks, and 

aggregation accuracy 

tests 

Achieves collaborative 

aggregation without data 

leaks, maintaining meter 

confidentiality. 
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[141] Badra, M., & Borghol, R. 

(2025). An efficient blockchain-

based privacy preservation scheme 

for smart grids. 

2025 Blockchain protocol 

enforcing differential 

privacy controls on grid 

data sharing 

Blockchain testnet, 

privacy parameter 

experiments, and data-

sharing performance 

metrics 

Offers transparent data 

provenance with DP 

enforcement, balancing 

auditability and privacy. 

 

[142] von der Heyden, J., Schlüter, 

N., Binfet, P., Asman, M., Zdrallek, 

M., Jager, T., & Schulze Darup, M. 

(2024). Privacy-Preserving Power 

Flow Analysis via Secure Multi-

Party Computation. 

2024 MPC-based secure 

power flow analysis 

enabling collaborative 

grid studies 

Multi-utility operational 

data, MPC runtime, and 

result accuracy validation 

Supports joint grid 

analyses without data 

exposure, preserving 

utility data 

confidentiality. 

 

[143] Mustafa, M. A., Cleemput, S., 

Aly, A., & Abidin, A. (2016). An 

MPC-based Protocol for Secure 

and Privacy-Preserving Smart 

Metering. 

2016 MPC protocol 

integrating meter data 

in an encrypted domain 

for billing 

Meter datasets, MPC 

overhead, and 

confidentiality 

benchmarks 

Facilitates secure billing 

computations with 

provable privacy 

guarantees for customer 

data. 

 

[144] Khan, A. A., Laghari, A. A., 

Awan, S. A., Jumani, A. K., 

Mahmood, A., Shaikh, A. A., & 

Soothar, P. (2023). Artificial 

intelligence and blockchain 

technology for secure smart grid 

and power distribution 

automation: A state-of-the-art 

review. 

2023 Survey of AI and 

blockchain integration 

for privacy and security 

in power distribution 

Review of blockchain 

architectures, AI 

applications, and privacy-

preserving schemes 

Outlines combined AI–

blockchain benefits, 

performance trade-offs, 

and research directions. 

 

[145] Khan, H. M., Jillani, R. M., 

Tahir, M., Chow, C. E., & Non, A. L. 

(2021). Fog-enabled secure 

multiparty computation-based 

aggregation scheme in smart grid. 

2021 Fog-based MPC scheme 

for near-edge privacy-

preserving data 

aggregation 

Edge device datasets, fog 

node performance 

testing, and aggregation 

accuracy metrics 

Reduces communication 

latency while preserving 

privacy via distributed 

MPC at the fog layer. 

 

[146] Zobiri, F., Bielecki, A., Ernst, 

D., & Glavic, M. (2024). Residential 

flexibility characterization and 

trading using secure multiparty 

computation. 

2024 MPC framework for 

privacy-preserving 

residential demand 

flexibility trading 

Residential demand 

profiles, MPC trading 

simulation experiments, 

and pricing outcome 

validation 

Enables trading of 

flexibility offers without 

revealing individual 

consumption patterns. 

 

[147] Mahmood, A., Khan, S., 

Albeshri, A., Ahmad, J., Saleem, K., 

& Iqbal, W. (2023). An efficient and 

privacy-preserving blockchain-

based authentication and key 

agreement scheme for smart grids. 

2023 Blockchain-based 

authentication protocol 

with built-in privacy 

controls 

Smart grid node 

simulations, 

authentication latency, 

and privacy parameter 

tests 

Delivers secure key 

agreement and node 

authentication without 

revealing node identity. 

 

[148] Rial, A., & Danezis, G. (2011). 

Privacy-Preserving Smart Metering. 

2011 Early foundational 

framework for privacy-

preserving metering 

using aggregation 

Prototype meter 

deployments, data 

aggregation accuracy, 

and privacy leakage 

analysis 

Introduces aggregation 

without individual data 

disclosure, setting the 

groundwork for 

subsequent schemes. 
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[149] Zhou, L., Wang, L. Y. Y Sun, Y. 

(2024). Leveraging zero-knowledge 

proofs for blockchain-based 

identity sharing: A survey. 

2024 Survey of ZKP 

techniques for identity 

and credential privacy in 

blockchain-enabled 

smart grids 

Review of ZKP protocols, 

implementation case 

studies, and performance 

benchmarks 

Highlights ZKP’s 

potential for 

decentralized identity 

management with strong 

privacy assurances. 

 

[150] Iqbal, A., Gope, P., & Sikdar, 

B. (2024). Privacy-Preserving 

Collaborative Split Learning 

Framework for Smart Grid Load 

Forecasting. 

2024 Split learning framework 

distributing model 

training across utilities 

without data sharing 

Load forecasting datasets 

from multiple utilities, 

split learning round 

performance evaluation. 

Retains forecasting 

accuracy while ensuring 

raw data never leaves the 

local utility environment. 

 

[151] Yang, L., Chen, X., Zhang, J., 

& Poor, H. V. (2014). Privacy-

Preserving Data Sharing in Smart 

Grid Systems. 

2014 Secure data sharing 

protocols for smart grids 

using attribute-based 

encryption and access 

control 

Smart grid pilot data, 

encryption scheme 

performance, and access 

policy enforcement tests 

Ensures fine-grained 

data sharing control 

supporting multiple 

stakeholders without 

data leaks. 

 

[152] Zhou, X., Feng, J., Wang, J., & 

Pan, J. (2022). Privacy-preserving 

household load forecasting based 

on non-intrusive load monitoring: 

A federated deep learning 

approach. 

2022 Federated DL approach 

combining NILM for 

private household load 

forecasting 

Household NILM 

datasets, federated 

training experiments, and 

forecasting accuracy 

under privacy constraints 

Improves forecasting 

accuracy while 

preserving household 

usage privacy via 

federated learning. 

 

[153] Fernández, J. D., Nascimento, 

A., Labrador, M. A., & Krishnan, R. 

(2022). Privacy-preserving 

federated learning for residential 

short-term load forecasting. 

2022 Federated learning 

protocol for aggregated 

residential load 

forecasting with DP 

guarantees 

Residential load datasets, 

FL round convergence 

tests, and DP noise 

tuning experiments 

Demonstrates reliable 

short-term forecasting 

with formal privacy 

guarantees on individual 

profiles. 

 

[154] Taïk, A., & Cherkaoui, S. 

(2020). Electrical load forecasting 

using edge computing and 

federated learning. 

2020 Edge-based federated 

learning framework for 

real-time load 

forecasting with privacy 

preservation 

Edge device power 

consumption datasets, 

federated round latency, 

and forecasting error 

metrics 

Shows low-latency 

forecasting at edge 

nodes, preserving raw 

data privacy and 

reducing central load. 

 

[155] Li, Z., Kang, J., Yu, R., Ye, D., 

Deng, Q., & Zhang, Y. (2018). 

Consortium blockchain for secure 

energy trading in the industrial 

Internet of Things. 

2018 Consortium blockchain 

architecture securing 

energy trading with 

privacy controls 

IoT device transaction 

logs, blockchain 

performance tests, and 

privacy policy 

enforcement 

Enables secure and 

private energy trading 

among consortium 

members with 

immutable ledgers. 

 

 

Table 5. Representative Privacy-Preserving AI Studies in Smart Grids 
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Figure 12. Year-wise distribution of privacy-preserving AI studies 

 

E. ADVERSARIAL MACHINE LEARNING DEFENSES 

Adversarial machine learning has emerged as a significant cybersecurity concern in smart grids, where attackers deliberately craft 

malicious inputs designed to deceive AI models. These adversarial examples, often indistinguishable from legitimate data, pose a 

severe risk to anomaly detection systems, intrusion detection systems (IDS), and other AI-enabled mechanisms that safeguard 

grid operations. Unlike traditional cyberattacks that exploit vulnerabilities in protocols or hardware, adversarial attacks directly 

target the machine learning pipeline, exploiting its sensitivity to small perturbations. This makes AI-based defenses a double-

edged sword: while they enhance grid reliability and real-time response, they also introduce new attack surfaces. Research in 

adversarial defenses for smart grids has focused on robust training strategies. One widely used technique is adversarial training, 

where models are explicitly trained on perturbed datasets to learn robust decision boundaries. By incorporating adversarial 

examples during model development, detection systems can better withstand evasion attempts. However, adversarial training 

alone is computationally expensive and may not generalize well to unseen attack strategies. Consequently, hybrid methods have 

been proposed, combining robust training with uncertainty quantification, where models assign confidence scores to 

predictions, enabling operators to flag suspicious low-confidence outputs. 

Another major defense strategy involves input sanitization, where raw data streams are pre-processed to filter out perturbations 

before being fed into machine learning models. For instance, statistical smoothing, feature compression, or transformation into 

alternative feature spaces can mitigate the impact of adversarial noise. Techniques such as wavelet-based filtering and 

dimensionality reduction have shown promise in reducing vulnerability while maintaining accuracy. At the same time, researchers 

have emphasized the importance of real-time sanitization, as delays in filtering can diminish the operational value of anomaly 

detection in high-frequency smart grid environments. Ensemble learning approaches have also been widely explored to counter 

adversarial threats. By integrating multiple diverse models, such as convolutional neural networks, long short-term memory 

networks, and tree-based classifiers, systems achieve greater resilience, since adversarial perturbations effective against one 

model may not transfer effectively across the entire ensemble. Voting-based and weighted-aggregation mechanisms further 

reduce false negatives, providing a safeguard against sophisticated, adaptive adversarial campaigns. In addition, model 

diversification can be extended by using heterogeneous feature representations and multimodal data sources, such as 

combining power consumption, network telemetry, and environmental sensor inputs. 

Recent advances have examined explainable AI (XAI) as a complementary defense, leveraging interpretability to highlight 

abnormal decision-making patterns that might signal adversarial manipulation. For example, if feature importance shifts 

unexpectedly in response to minor input variations, the model’s vulnerability can be flagged in real time. Similarly, adversarial 

detection frameworks have been developed that operate as a meta-layer, monitoring the behavior of core detection models and 

flagging anomalous decision trajectories. These meta-defences provide an additional layer of reliability by continuously auditing 

the AI’s operational integrity. The field of adversarial machine learning defenses in smart grids is increasingly urgent, as attackers 

now employ AI to automate and scale their own attack strategies. The dynamic interplay between adversaries and defenders has 

transformed cybersecurity into an arms race, with smart grid operators compelled to adopt adaptive and proactive defense 

strategies. Looking ahead, research points toward the integration of adversarial robustness with privacy-preserving AI, federated 
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learning, and secure multiparty computation, ensuring that defenses can be collaboratively improved across distributed 

environments without exposing sensitive infrastructure data. Ultimately, building resilient AI-based security in smart grids will 

require a holistic framework that combines robust training, data sanitization, ensemble modeling, and explainability to stay 

ahead of evolving adversarial threats. 

Reference and Year Year Perform Work Dataset/Testing 

mechanism 

Finding and Contribution 

[156] Efatinasab, E., Brighente, A., 

Rampazzo, M., Azadi, N., & Conti, 

M. (2025). Fortifying smart grid 

stability: Defending against 

adversarial attacks using robust 

anomaly detection and mitigation 

strategies. 

2025 Develops robust anomaly 

detection and mitigation 

strategies to defend smart 

grid stability against 

adversarial attacks 

Smart grid stability 

datasets, adversarial 

attack simulations, and 

robust detection 

algorithm performance 

evaluation 

Demonstrates significant 

improvement in grid 

stability defense through 

integrated anomaly 

detection and mitigation 

approaches. 

[157] Sánchez, G., Araya, L. Y 

Parra, L. (2024). Attacking 

Learning-based Models in Smart 

Grids: Adversarial Examples and 

Defense Mechanisms. 

2024 Analyzes adversarial 

attacks on smart grid ML 

models and proposes 

comprehensive defense 

mechanisms 

Smart grid ML model 

datasets, adversarial 

example generation, and 

defense mechanism 

evaluation benchmarks 

Identifies key 

vulnerabilities in smart 

grid ML models and 

provides effective defense 

strategies against 

adversarial examples. 

[158] Hao, J., Piechocki, R. J., 

Kaleshi, D., Chin, W. H., & Fan, Z. 

(2022). Adversarial attacks on 

deep learning models in smart 

grids: A survey and defense 

mechanisms. 

2022 Comprehensive survey of 

adversarial attacks on 

deep learning models in 

smart grids with defense 

mechanism analysis 

Literature review of 

adversarial attack 

methods, deep learning 

model vulnerabilities, and 

defense technique 

benchmarks 

Systematizes adversarial 

attack landscape and 

defense mechanisms, 

identifying research gaps 

and future directions. 

[159] Efatinasab, E., Brighente, A., 

Rampazzo, M., Azadi, N., & Conti, 

M. (2024). A Novel Generative 

Attack on Smart Grid Stability 

Prediction Using Adversarial 

Training. 

2024 Proposes novel generative 

adversarial attack 

methods and 

corresponding adversarial 

training defenses 

Grid stability prediction 

datasets, generative 

adversarial networks, and 

adversarial training 

validation experiments 

Shows adversarial training 

significantly improves 

model robustness against 

sophisticated generative 

attacks on stability 

prediction. 

[160] Zhang, Z. (2024). 

Reinforcement Learning-Based 

Approaches for Enhancing 

Security and Resilience in Smart 

Control: A Survey on Attack and 

Defense Methods. 

2024 Survey of reinforcement 

learning approaches for 

smart grid security 

enhancement and 

adversarial defense 

RL-based security 

applications review, attack 

scenario modeling, and 

defense strategy 

performance analysis 

Identifies RL as a 

promising approach for 

adaptive adversarial 

defense and provides a 

framework for security 

applications. 

[161] Omara, A., Guidi, B., & Ricci, 

L. (2024). An AI-driven solution to 

prevent adversarial attacks on 

V2M services in smart grids. 

2024 AI-driven defense solution 

specifically designed for 

vehicle-to-microgrid 

(V2M) services against 

adversarial attacks 

V2M communication 

datasets, adversarial 

attack scenarios, and AI 

defense mechanism 

performance evaluation 

Demonstrates an AI 

defense solution that 

effectively prevents 

adversarial attacks while 

maintaining V2M service 

quality. 

[162] Jeje, M. O. (2025). 

Cybersecurity Assessment of 

Smart Grid Exposure Using a 

Machine Learning Based 

Approach with Adversarial 

2025 Cybersecurity assessment 

framework incorporating 

adversarial robustness for 

comprehensive smart grid 

vulnerability analysis 

Smart grid vulnerability 

datasets, adversarial 

robustness metrics, and 

cybersecurity assessment 

validation experiments 

Provides a comprehensive 

cybersecurity assessment 

framework that accounts 

for adversarial threats and 

robustness requirements. 
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Robustness. 

[163] Okokpujie, K. O., Okonkwo, 

U. C., Okokpujie, I. P., & John, S. 

N. (2025). AI-augmented 

cybersecurity for smart grids in 

the United States: Adversarial 

defense mechanisms. 

2025 AI-augmented 

cybersecurity framework 

with a specific focus on 

adversarial defense 

mechanisms for U.S. smart 

grids 

U.S. smart grid 

infrastructure data, AI 

cybersecurity 

applications, and 

adversarial defense 

performance benchmarks 

Shows AI-augmented 

defenses significantly 

improve cybersecurity 

posture against 

sophisticated adversarial 

attacks. 

[164] Verma, S., & Raj, A. (2025). A 

short report on deep learning 

synergy for decentralized smart 

grid cybersecurity: Adversarial 

robustness approaches. 

2025 Explores deep learning 

synergy for decentralized 

smart grid cybersecurity 

with emphasis on 

adversarial robustness 

Decentralized smart grid 

architectures, deep 

learning model 

deployment, and 

adversarial robustness 

evaluation 

Demonstrates deep 

learning approaches 

enhance decentralized 

grid security while 

maintaining adversarial 

robustness. 

[165] Berghout, T., Benbouzid, M., 

Amirat, Y., Mouss, L. H., & 

Saidane, A. (2022). Machine 

learning for cybersecurity in smart 

grids: A comprehensive survey on 

adversarial attacks and defenses. 

2022 Comprehensive survey 

examining ML 

cybersecurity applications 

in smart grids with a focus 

on adversarial attacks and 

defenses 

ML cybersecurity 

literature review, 

adversarial attack 

taxonomies, and defense 

mechanism comparative 

analysis 

Provides systematic 

categorization of 

adversarial threats and 

defense mechanisms with 

performance trade-off 

analysis. 

[166] Shabbir, A., Shafique, T., & 

Dagiuklas, T. (2025). Smart grid 

security through fusion-enhanced 

federated learning: Defense 

against data poisoning attacks. 

2025 Fusion-enhanced 

federated learning 

approach for smart grid 

security with specific 

defense against data 

poisoning 

Federated learning 

datasets, data poisoning 

attack simulations, and 

fusion-based defense 

mechanism evaluation 

Shows fusion-enhanced FL 

provides robust defense 

against data poisoning 

while maintaining 

collaborative learning 

benefits. 

[167] Efatinasab, E., Brighente, A., 

Rampazzo, M., Azadi, N., & Conti, 

M. (2025). Towards Robust 

Stability Prediction in Smart Grids: 

Adversarial Training and Defense 

Mechanisms. 

2025 Develops adversarial 

training frameworks and 

defense mechanisms for 

robust smart grid stability 

prediction 

Grid stability datasets, 

adversarial training 

protocols, and robustness 

evaluation metrics 

Achieves significant 

improvement in stability 

prediction robustness 

through systematic 

adversarial training 

approaches. 

[168] Tian, J., Wang, B., Li, J., 

Wang, Z., & Ozay, M. (2022). 

Adversarial Attacks and Defense 

Methods for Power Quality 

Recognition in Smart Grids. 

2022 Examines adversarial 

attacks on power quality 

recognition systems and 

develops corresponding 

defense methods 

Power quality 

measurement datasets, 

adversarial attack 

generation, and defense 

method performance 

evaluation 

Identifies vulnerabilities in 

power quality recognition 

and provides effective 

defense methods against 

adversarial manipulation. 

[169] Nelson, D., Hallberg, J., & 

Kuzminykh, I. (2024). Realistic 

Adversarial Attacks on Smart Grid 

Intrusion Detection Systems and 

Defense Mechanisms. 

2024 Develops realistic 

adversarial attacks on 

smart grid IDS and 

corresponding practical 

defense mechanisms 

Smart grid IDS datasets, 

realistic attack scenario 

modeling, and defense 

mechanism effectiveness 

testing 

Demonstrates that realistic 

adversarial attacks can 

evade existing IDS and 

provides practical defense 

solutions. 

[170] Madhavarapu, V. P. K., 

Bhattacharjee, S., & Islam, M. J. 

(2022). A Generative Model for 

Evasion Attacks in Smart Grid: 

Defense Strategies. 

2022 Proposes generative 

models for evasion attacks 

and develops 

corresponding defense 

strategies for smart grids 

Smart grid operational 

datasets, generative 

attack model training, 

and defense strategy 

validation experiments 

Shows generative models 

can create sophisticated 

evasion attacks and 

provides effective defense 

strategies. 
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[171] Afrin, A., & Ardakanian, O. 

(2023). Adversarial Attacks on 

Machine Learning-Based State 

Estimation in Power Distribution 

Systems: Defense through 

Adversarial Training. 

2023 Analyzes adversarial 

attacks on ML-based state 

estimation and develops 

adversarial training 

defenses 

Power distribution system 

datasets, state estimation 

models, and adversarial 

training effectiveness 

evaluation 

Demonstrates that 

adversarial training 

significantly improves the 

robustness of state 

estimation against 

adversarial manipulation. 

[172] Khaw, Y. M., Jahromi, A. A., 

Fahim, S. R., & Hossain, E. (2024). 

Evasive attacks against 

autoencoder-based cyberattack 

detection systems in smart grids: 

Defense mechanisms. 

2024 Studies evasive attacks 

against autoencoder-

based detection systems 

and proposes defense 

mechanisms. 

Autoencoder-based 

detection datasets, 

evasive attack scenarios, 

and defense mechanism 

performance benchmarks 

Identifies autoencoder 

vulnerabilities to evasive 

attacks and provides 

robust defense 

mechanisms. 

[173] Gafur, J., Ahmed, S., & 

Rahman, M. A. (2024). Adversarial 

Robustness and Explainability of 

Machine Learning Models in 

Smart Grid Cybersecurity. 

2024 Examines adversarial 

robustness and 

explainability 

requirements for ML 

models in smart grid 

cybersecurity 

Smart grid cybersecurity 

datasets, adversarial 

robustness metrics, and 

explainability evaluation 

frameworks 

Provides a comprehensive 

framework balancing 

adversarial robustness 

with model explainability 

requirements. 

[174] Agarwal, A., Kumar, S., & 

Singh, S. K. (2022). Employing 

adversarial robustness techniques 

for large-scale stochastic optimal 

power flow problems. 

2022 Applies adversarial 

robustness techniques to 

large-scale stochastic 

optimal power flow 

optimization problems 

Large-scale power system 

datasets, stochastic 

optimization scenarios, 

and adversarial 

robustness validation 

Shows adversarial 

robustness techniques 

improve the reliability and 

security of large-scale 

power flow optimization. 

[175] Hao, J., Kaleshi, D., & 

Piechocki, R. J. (2014). Adaptive 

Defending Strategy for Smart 

Grid Attacks: A Game-Theoretic 

Approach. 

2014 Proposes adaptive 

defense strategies using 

game-theoretic 

approaches for smart grid 

attack mitigation 

Smart grid attack 

scenarios, game-theoretic 

modeling, and adaptive 

defense strategy 

performance evaluation 

Demonstrates that game-

theoretic adaptive 

defenses provide superior 

performance against 

evolving attack strategies. 

[176] Kim, J., & Park, S. (2024). 

Random Gradient Masking as a 

Defensive Measure to Deep 

Leakage in Federated Learning for 

Smart Grids. 

2024 Proposes random gradient 

masking techniques to 

defend against deep 

leakage attacks in 

federated learning 

Federated learning 

datasets, gradient leakage 

attack simulations, and 

defensive masking 

technique evaluation 

Shows random gradient 

masking effectively 

prevents deep leakage 

while maintaining 

federated learning 

performance. 

[177] Zhang, J., Nikolić, K., Carlini, 

N., & Tramèr, F. (2024). Gradient 

Masking All-at-Once: Ensemble 

Everything Everywhere Is Not 

Robust in Smart Grid 

Applications. 

2024 Analyzes limitations of 

ensemble gradient 

masking approaches for 

adversarial robustness in 

smart grid applications 

Smart grid ensemble 

model datasets, gradient 

masking evaluation, and 

robustness assessment 

experiments 

Demonstrates that 

ensemble gradient 

masking approaches have 

significant limitations and 

proposes alternative 

solutions. 

[178] Prasad, K. S., Aithal, G., Bhat, 

S. S., & Shetty, P. (2025). A two-

tier optimization strategy for 

feature selection in adversarial 

attack mitigation for IoT networks 

in smart grids. 

2025 Develops a two-tier 

optimization strategy for 

feature selection to 

mitigate adversarial 

attacks on smart grid IoT 

networks 

Smart grid IoT network 

datasets, two-tier 

optimization algorithms, 

and adversarial attack 

mitigation evaluation 

Shows that two-tier 

feature selection 

significantly improves 

adversarial attack 

mitigation in IoT-enabled 

smart grids. 

[179] Irmak, A., Karabacak, K., & 

Aydeger, A. (2020). Adversarial 

2020 Proposes adversarial 

training methods to 

Power system 

communication datasets, 

Demonstrates that 

adversarial training 
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Training of Power Systems 

Against Denial-of-Service Attacks: 

Defense Mechanisms. 

defend power systems 

against denial-of-service 

attacks 

DoS attack simulations, 

and adversarial training 

effectiveness evaluation 

provides robust defense 

against sophisticated 

denial-of-service attacks. 

[180] Moradi, M., Weng, Y., & Lai, 

Y. C. (2022). Defending Smart 

Electrical Power Grids against 

Cyberattacks with Deep 

Reinforcement Learning. 

2022 Develops deep 

reinforcement learning 

approaches for defending 

smart grids against 

various cyberattack types 

Smart grid cyberattack 

datasets, deep RL training 

environments, and 

defense performance 

evaluation metrics 

Shows deep RL 

approaches provide 

adaptive and effective 

defense against diverse 

cyberattack strategies. 

[181] Singla, S., Feizi, S., & 

Kaulgud, V. (2020). Second-Order 

Provable Defenses against 

Adversarial Attacks in Smart Grid 

Machine Learning Applications. 

2020 Develops second-order 

provable defense 

mechanisms with 

mathematical guarantees 

against adversarial attacks 

Smart grid ML application 

datasets, second-order 

optimization methods, 

and provable defense 

validation 

Provides mathematically 

provable defense 

guarantees against 

adversarial attacks in 

smart grid ML 

applications. 

[182] Bhattacharjee, S., Islam, M. 

J., & Abedzadeh, S. (2022). Robust 

Anomaly-based Attack Detection 

in Smart Grids under Data 

Poisoning Attacks. 

2022 Develops robust anomaly 

detection methods that 

maintain effectiveness 

under data poisoning 

attacks 

Smart grid anomaly 

detection datasets, data 

poisoning attack 

simulations, and robust 

detection evaluation 

Shows robust anomaly 

detection methods 

maintain high 

performance even under 

sophisticated data 

poisoning attacks. 

[183] Tian, J., Wang, B., Li, J., 

Wang, Z., & Ozay, M. (2022). 

Adversarial attack and defense 

methods for neural network-

based state estimation in smart 

grids. 

2022 Comprehensive analysis of 

adversarial attacks and 

defense methods for 

neural network-based 

state estimation 

Smart grid state 

estimation datasets, 

neural network model 

training, and adversarial 

defense validation 

Provides a comprehensive 

framework for securing 

neural network-based 

state estimation against 

adversarial attacks. 

[184] Chen, L., Wang, S., Liu, Y., & 

Zhang, K. (2025). How different 

architectures stand up to 

adversarial attacks in smart grid 

applications. 

2025 Comparative analysis of 

how different neural 

network architectures 

handle adversarial attacks 

in smart grid contexts 

Multi-architecture neural 

network datasets, 

adversarial attack 

scenarios, and robustness 

comparison analysis 

Identifies the most robust 

neural network 

architectures for smart 

grid applications under 

adversarial conditions. 

[185] Kraidia, I., Bourahla, M., & 

Ramdane-Cherif, A. (2024). 

Defense against adversarial 

attacks: robust and efficient 

compressed models for smart 

grid applications. 

2024 Develops robust and 

efficient compressed 

models that maintain 

adversarial robustness for 

smart grid deployment 

Compressed model 

datasets, adversarial 

robustness evaluation, 

and efficiency-robustness 

trade-off analysis 

Achieves optimal balance 

between model 

compression efficiency 

and adversarial robustness 

for practical deployment. 

 

Table 6. Representative Adversarial Machine Learning Defense Studies in Smart Grids 
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Figure 13. Year-wise distribution of adversarial ML defense studies 

 

F. SECURE DATA FUSION AND AGGREGATION 

The modern smart grid ecosystem generates massive amounts of data from diverse and distributed sources, including smart 

meters, phasor measurement units (PMUs), supervisory control and data acquisition (SCADA) systems, Internet of Things (IoT) 

sensors, and distributed energy resources such as solar panels and wind turbines. While the integration of these heterogeneous 

data streams provides unparalleled opportunities for real-time situational awareness, operational efficiency, and predictive 

maintenance, it also raises significant challenges related to data integrity, authenticity, and trust. Secure data fusion and 

aggregation frameworks are therefore critical for ensuring that decisions derived from multi-source data are both reliable and 

resilient against cyber threats. AI-driven secure data fusion mechanisms have emerged as a powerful solution to address these 

challenges. By leveraging advanced machine learning models, it is possible to combine data streams of varying fidelity, 

granularity, and modality into unified, high-quality representations. For example, anomaly detection models trained on fused 

data from both PMUs and IoT devices can detect subtle inconsistencies that may be overlooked when analyzing data sources 

independently. Such integration enhances the robustness of intrusion detection systems and supports dynamic load balancing, 

fault localization, and demand response optimization. However, the inherent sensitivity of energy data necessitates a strong 

focus on security guarantees during the fusion process. 

Recent research emphasizes the use of blockchain-AI hybrids to strengthen trust in secure data aggregation. Blockchain provides 

immutable, tamper-resistant logs of data provenance, ensuring that inputs to AI models can be traced back to verified origins. 

When coupled with AI algorithms for data aggregation and anomaly detection, this hybrid approach creates a layered defense: 

blockchain ensures integrity and accountability, while AI provides adaptive, scalable, and intelligent processing. This dual 

strategy is particularly promising for distributed generation systems, where multiple stakeholders, such as prosumers, utilities, 

and aggregators, must collaborate without fully trusting one another. Secure multiparty computation (SMPC) and homomorphic 

encryption have also been investigated as complementary technologies in this domain. These cryptographic techniques enable 

data aggregation across different parties without exposing raw data, ensuring privacy-preserving collaboration. For instance, 

multiple microgrids can share encrypted operational data to a central AI model, which then performs predictive analytics without 

ever accessing the original plaintext data. This preserves confidentiality while still enabling collective intelligence across 

distributed networks. 

From a resilience perspective, the integration of redundancy-aware fusion algorithms has shown promise. By weighting data 

streams based on trust scores or reliability metrics, AI systems can mitigate the impact of compromised or corrupted sources. 

This adaptive weighting mechanism ensures that decision-making remains accurate even in the presence of adversarial data 

injections or faulty devices. Furthermore, techniques such as federated learning have been extended to secure data fusion tasks, 

where local models trained on heterogeneous data contribute to a global aggregation without centralizing sensitive raw data. 

Despite these advances, open research challenges remain. One key challenge lies in balancing the computational overhead of 

blockchain and cryptographic protocols with the real-time constraints of smart grid operations. Additionally, as adversaries 

increasingly exploit AI itself, ensuring that fusion algorithms are resistant to adversarial manipulation becomes critical. Another 

challenge is scalability: as the volume of IoT devices in the grid grows, secure data fusion systems must evolve to handle millions 
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of concurrent streams without performance degradation. Secure data fusion and aggregation represent a cornerstone of 

trustworthy AI for the smart grid. By combining blockchain-based provenance guarantees, cryptographic privacy-preserving 

methods, and AI-driven fusion algorithms, researchers are building frameworks that not only ensure integrity and authenticity 

but also unlock the full potential of heterogeneous data integration. The future of smart grid security will likely depend on how 

effectively these interdisciplinary approaches are harmonized to support both operational efficiency and cyber resilience. 

 

Reference and Year Year Perform Work Dataset/Testing 

mechanism 

Finding and Contribution 

[186] Xiao, J., Wu, C., Zhang, Y., 

Li, Q., & Wang, H. (2024). Multi-

source data security protection 

of smart grid based on edge 

computing and blockchain 

technology. 

2024 Develops a multi-source 

data security protection 

framework combining 

edge computing and 

blockchain for smart grid 

data fusion 

Multi-source smart grid 

datasets, edge 

computing testbeds, and 

blockchain security 

validation experiments 

Demonstrates enhanced 

data security through an 

integrated edge-blockchain 

approach, improving fusion 

efficiency and privacy 

protection. 

[187] Adewole, K. S., & 

Jacobsson, A. (2024). A Privacy 

and Security-Aware Model for 

IoT Data Fusion in Smart 

Connected Homes. 

2024 Privacy-aware IoT data 

fusion model specifically 

designed for smart home 

energy management 

systems 

Smart home IoT datasets, 

privacy threat modeling, 

and security-aware fusion 

algorithm evaluation 

Achieves secure IoT data 

fusion while maintaining 

privacy guarantees and 

operational efficiency in 

connected homes. 

[188] Deng, S., Xie, K., Li, K., 

Zhou, J., & He, D. (2024). Data-

driven and privacy-preserving 

risk assessment method for 

power grid operators. 

2024 Data-driven risk 

assessment framework 

with privacy preservation 

for power grid operational 

decision making 

Power grid operational 

datasets, risk assessment 

scenarios, and privacy-

preserving analytics 

validation 

Provides accurate risk 

assessment while 

maintaining strict privacy 

guarantees for sensitive 

operational data. 

[189] Tian, L., Zhang, H., Wang, 

Y., & Liu, C. (2024). Privacy 

Preserving Data Fusion: A 

Comprehensive Framework for 

Smart Grid Applications. 

2024 Comprehensive privacy-

preserving data fusion 

framework tailored for 

diverse smart grid 

applications 

Multi-application smart 

grid datasets, privacy 

metrics evaluation, and 

comprehensive fusion 

framework testing 

Establishes a unified 

framework for privacy-

preserving data fusion 

across various smart grid 

use cases. 

[190] Ali, W., Din, I. U., 

Almogren, A., & Kim, B. S. 

(2022). A Novel Privacy 

Preserving Scheme for Smart 

Grid-Based Home Area 

Networks. 

2022 Privacy-preserving scheme 

for secure data 

aggregation and fusion in 

smart grid home area 

networks 

Home area network 

datasets, privacy attack 

scenarios, and 

aggregation scheme 

performance evaluation 

Demonstrates effective 

privacy protection for home 

energy data while enabling 

necessary grid operations. 

[191] Dai, X., Li, J., Wang, Y., & 

Chen, R. (2024). Privacy-

preserving distributed state 

estimation in smart grid using 

sensor data fusion and 

differential privacy. 

2024 Distributed state 

estimation framework 

using secure sensor data 

fusion with differential 

privacy guarantees 

Multi-sensor smart grid 

datasets, distributed 

estimation algorithms, 

and differential privacy 

validation 

Achieves accurate 

distributed state estimation 

while providing formal 

privacy guarantees through 

differential privacy. 

[192] Guo, W., Zhang, B., Li, C., & 

Wang, X. (2025). 

Privacy‐Preserving Real‐Time 

Smart Grid Topology Analysis 

Using Graph Neural Networks 

2025 Real-time topology 

analysis using GNN-based 

secure data fusion with 

differential privacy 

protection 

Smart grid topology 

datasets, graph neural 

network training, and 

differential privacy 

parameter tuning 

Enables real-time topology 

analysis while maintaining 

privacy through differential 

privacy-enhanced GNN 

fusion. 
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with Differential Privacy. 

[193] Zhang, S., Huang, Y. Y., Ma, 

L. (2024). A Secure Data 

Aggregation Scheme to 

Traceback Malicious Smart 

Meters in Vehicle-to-Grid 

Networks. 

2024 Secure aggregation 

scheme with malicious 

node detection capability 

for vehicle-to-grid data 

fusion 

Vehicle-to-grid 

communication datasets, 

malicious node 

simulation, and traceback 

algorithm validation 

Provides secure V2G data 

aggregation while enabling 

identification and tracing of 

compromised smart 

meters. 

[194] Tonyali, S., Akkaya, K., 

Saputro, N., & Uluagac, A. S. 

(2017). A reliable data 

aggregation mechanism with 

Homomorphic Encryption in 

Smart Grid AMI Networks. 

2017 Homomorphic encryption-

based reliable data 

aggregation mechanism 

for Advanced Metering 

Infrastructure 

AMI network datasets, 

homomorphic encryption 

performance 

benchmarks, and 

reliability testing 

scenarios 

Demonstrates reliable and 

private data aggregation 

using homomorphic 

encryption with acceptable 

computational overhead. 

[195] Chen, Y., Martínez-Ortega, 

J. F., Castillejo, P., & López, L. 

(2019). A Homomorphic-Based 

Multiple Data Aggregation 

Scheme for Smart Grid. 

2019 Multiple data aggregation 

schemes using 

homomorphic encryption 

for diverse smart grid data 

types 

Multi-type smart grid 

datasets, homomorphic 

encryption algorithms, 

and aggregation scheme 

evaluation 

Enables secure aggregation 

of multiple data types while 

preserving computational 

privacy through 

homomorphic encryption. 

[196] Kang, W., Lee, S., Kim, J., & 

Park, D. (2024). A secure and 

efficient data aggregation 

scheme for cloud-assisted smart 

grids. 

2024 Secure and efficient data 

aggregation framework 

designed for cloud-

assisted smart grid 

architectures 

Cloud-based smart grid 

datasets, security 

analysis, and efficiency 

benchmarking 

experiments 

Balances security and 

efficiency in cloud-assisted 

aggregation, enabling 

scalable smart grid data 

processing. 

[197] Zhang, X., Wang, L., Chen, 

Y., & Liu, H. (2024). Fine-grained 

encrypted data aggregation 

mechanism with fault tolerance 

in edge-assisted smart grids. 

2024 Fine-grained encrypted 

aggregation with fault 

tolerance capabilities for 

edge-assisted smart grid 

systems 

Edge computing 

datasets, fault injection 

scenarios, and encrypted 

aggregation performance 

evaluation 

Provides fault-tolerant, 

encrypted aggregation 

enabling robust data fusion 

under node failures and 

attacks. 

[198] Croce, D., Giuliano, F., 

Tinnirello, I., Garbo, G., & 

Mangione, S. (2020). Privacy-

Preserving Overgrid: Secure 

Data Collection for the Smart 

Grid. 

2020 Privacy-preserving secure 

data collection and 

aggregation framework for 

large-scale smart grid 

deployments 

Large-scale smart grid 

datasets, privacy metrics 

evaluation, and secure 

collection protocol 

validation 

Enables privacy-preserving 

data collection at scale 

while maintaining 

operational utility for grid 

management. 

[199] Yan, R., Li, Y., Zhang, H., & 

Wang, Q. (2024). Multi-Smart 

Meter Data Encryption Scheme 

Based on Differential Privacy. 

2024 Multi-smart meter data 

encryption and 

aggregation scheme 

incorporating differential 

privacy mechanisms 

Multi-meter datasets, 

differential privacy 

parameter optimization, 

and encryption scheme 

performance analysis 

Combines encryption with 

differential privacy to 

provide multi-layered 

protection for smart meter 

data fusion. 

[200] Mahmood, A., Khan, S., 

Albeshri, A., Ahmad, J., Saleem, 

K., & Iqbal, W. (2023). An 

efficient and privacy-preserving 

blockchain-based secure data 

aggregation in smart grids. 

2023 Blockchain-based secure 

data aggregation 

framework with privacy 

preservation for smart grid 

applications 

Blockchain testnet 

datasets, smart contract 

evaluation, and privacy-

preserving aggregation 

performance metrics 

Demonstrates blockchain-

enabled secure 

aggregation with strong 

privacy guarantees and 

operational efficiency. 

[201] Kabir, F., Megías, D., & 

Cabaj, K. (2025). RIOT-based 

2025 RIOT OS-based smart 

metering system with 

RIOT OS testbed, 

watermarking algorithm 

Integrates watermarking 

with encryption to provide 
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smart metering system for 

privacy-preserving data 

aggregation using watermarking 

and encryption. 

watermarking and 

encryption for privacy-

preserving aggregation 

validation, and 

encryption performance 

benchmarks 

authentication and privacy 

in resource-constrained 

environments. 

[202] Baksh, R., Ahmad, T., & 

Hassan, M. (2024). A 

comprehensive and secure 

scheme for privacy-preserving 

data aggregation in smart grids. 

2024 Comprehensive security 

framework for privacy-

preserving data 

aggregation across smart 

grid infrastructure 

Comprehensive smart 

grid datasets, security 

threat analysis, and 

privacy-preserving 

aggregation evaluation 

Provides a holistic security 

approach combining 

multiple privacy-preserving 

techniques for robust data 

aggregation. 

[203] Khan, H. M., Jillani, R. M., 

Tahir, M., Chow, C. E., & Non, A. 

L. (2021). Fog-enabled secure 

multiparty computation-based 

aggregation scheme in smart 

grid. 

2021 Fog computing-enabled 

secure multiparty 

computation framework 

for smart grid data 

aggregation. 

Fog computing testbeds, 

multiparty computation 

protocols, and latency-

security trade-off analysis 

Reduces aggregation 

latency while maintaining 

privacy through fog-

enabled distributed secure 

computation. 

[204] Kabir, F., Megías, D., Parra, 

L., Lloret, J., & Kabir, S. (2024). 

Privacy-preserving data 

aggregation protocol for smart 

grid using reversible 

watermarking and 

homomorphic encryption. 

2024 Aggregation protocol 

combining reversible 

watermarking with 

homomorphic encryption 

for enhanced security 

Watermarking datasets, 

homomorphic encryption 

benchmarks, and 

protocol security analysis 

Combines authentication 

through watermarking with 

computational privacy via 

homomorphic encryption. 

[205] Daş, R., Türkoğlu, M., & 

Çelik, E. (2025). Multi-sensor 

data fusion perspective for 

smart grid analytics. 

2025 Multi-sensor data fusion 

framework specifically 

designed for 

comprehensive smart grid 

analytics applications 

Multi-sensor smart grid 

datasets, fusion algorithm 

benchmarks, and 

analytics performance 

evaluation 

Demonstrates improved 

analytics accuracy through 

systematic multi-sensor 

data fusion approaches. 

[206] Yao, S., Chen, J., Liu, K., & 

Zhang, D. (2022). A Secure Data 

Aggregation Scheme Enabling 

Abnormal Node Detection in 

Smart Grid. 

2022 Secure aggregation 

scheme with integrated 

abnormal node detection 

capabilities for smart grid 

networks 

Smart grid network 

datasets, abnormal 

behavior simulation, and 

detection algorithm 

validation 

Enables secure aggregation 

while identifying and 

isolating abnormal nodes 

that may compromise data 

integrity. 

[207] Tan, S., De, D., Song, W., & 

Das, S. K. (2017). Survey of 

Security Advances in Smart Grid: 

A Data-Driven Approach. 

2017 Comprehensive survey of 

security advances in smart 

grids with a focus on data-

driven approaches and 

fusion 

Literature survey of smart 

grid security methods, 

data-driven techniques, 

and comparative analysis 

Systematizes security 

advances and identifies 

research gaps in data-

driven smart grid security 

approaches. 

[208] Wang, Z., Li, H., Chen, X., & 

Liu, Y. (2023). A 

Multidimensional Data 

Aggregation Scheme Based on 

Edge Federated Learning and 

Blockchain for Smart Grid. 

2023 Multidimensional 

aggregation combining 

edge federated learning 

with blockchain for 

enhanced security 

Edge federated learning 

datasets, blockchain 

integration experiments, 

and multidimensional 

aggregation evaluation 

Integrates federated 

learning with blockchain to 

provide secure, privacy-

preserving 

multidimensional 

aggregation. 

[209] Hafeez, K., Rehmani, M. H., 

Mishra, S., & O'Shea, D. (2025). 

Practical Implications of 

Implementing Local Differential 

2025 Analysis of practical 

implementation challenges 

and solutions for local 

differential privacy in smart 

Real-world smart grid 

datasets, differential 

privacy implementation 

experiments, and 

Identifies practical 

challenges and provides 

implementation guidelines 

for differential privacy in 



JCSTS 7(8): 1207-1295 

 

Page | 1245  

Privacy for Smart Grids. grid data fusion practical deployment 

analysis 

smart grid systems. 

[210] Ravi, N., Scaglione, A., 

Peisert, S., & Pradhan, P. (2024). 

Preserving Smart Grid Integrity: 

A Differential Privacy Framework 

for Secure Detection of False 

Data Injection Attacks. 

2024 Differential privacy 

framework for maintaining 

grid integrity while 

enabling secure attack 

detection through data 

fusion 

Attack detection datasets, 

differential privacy 

parameter tuning, and 

integrity preservation 

validation 

Maintains grid operational 

integrity while providing 

privacy-preserving attack 

detection capabilities. 

[211] Tian, H., Zheng, N., & Jian, 

Y. (2023). Advanced Metering 

Infrastructure Data Aggregation 

Scheme Based on Blockchain. 

2023 Blockchain-based data 

aggregation scheme 

specifically designed for 

Advanced Metering 

Infrastructure systems 

AMI blockchain testbed, 

smart contract 

implementation, and 

aggregation performance 

benchmarking 

Provides decentralized, 

tamper-resistant data 

aggregation for AMI 

systems using blockchain 

technology. 

[212] Li, Y., Zhang, K., & Wang, 

H. (2023). Localized Differential 

Privacy-based Data Privacy 

Protection Scheme for Home 

Smart Meters. 

2023 Localized differential 

privacy approach for 

protecting privacy in home 

smart meter data 

aggregation 

Home smart meter 

datasets, localized 

differential privacy 

algorithms, and privacy-

utility trade-off analysis 

Achieves strong local 

privacy protection for home 

energy data while 

maintaining utility for grid 

operations. 

[213] Chen, S., Yang, L., Zhao, C., 

Varadarajan, V., & Wang, K. 

(2022). Double-blockchain 

Assisted Secure and Anonymous 

Data Aggregation for Fog-

enabled Smart Grid. 

2022 Double-blockchain 

architecture for secure and 

anonymous data 

aggregation in fog-

enabled smart grid 

systems 

Fog computing datasets, 

double-blockchain 

implementation, and 

anonymous aggregation 

validation 

Provides enhanced security 

and anonymity through 

dual blockchain 

architecture in fog-enabled 

environments. 

[214] Pei, T., Li, X., Zhang, Y., & 

Wang, L. (2024). Blockchain-

based anonymous 

authentication and data 

aggregation scheme for smart 

grid with privacy preservation. 

2024 Blockchain-enabled 

anonymous authentication 

combined with privacy-

preserving data 

aggregation for smart 

grids 

Authentication datasets, 

blockchain privacy 

mechanisms, and 

aggregation scheme 

security evaluation 

Enables anonymous 

authentication while 

maintaining privacy in data 

aggregation through 

blockchain integration. 

[215] Singh, P., Nayyar, A., Kaur, 

A., & Ghosh, U. (2021). 

Blockchain and homomorphic 

encryption-based privacy 

preservation data aggregation 

model for smart grid. 

2021 Integrated blockchain and 

homomorphic encryption 

approach for privacy-

preserving smart grid data 

aggregation 

Smart grid aggregation 

datasets, blockchain-HE 

integration testing, and 

privacy preservation 

validation 

Combines blockchain 

immutability with 

homomorphic encryption 

privacy to provide 

comprehensive data 

protection. 

 

Table 7. Representative Secure Data Fusion and Aggregation Studies for Smart Grids 
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Figure 14. Year-wise distribution of secure data fusion/aggregation studies 

 

G. FALSE DATA INJECTION ATTACK (FDIA) DETECTION 

False Data Injection Attacks (FDIAs) are among the most pervasive and dangerous cyber threats targeting smart grids. By 

maliciously altering measurement data from smart meters, sensors, or phasor measurement units (PMUs), attackers can mislead 

state estimators, compromise situational awareness, and manipulate market operations without triggering traditional anomaly 

detection systems. Unlike random noise or accidental errors, FDIA is adversarial by design, exploiting system vulnerabilities to 

bypass conventional Bad Data Detection (BDD) mechanisms. The sophistication of these attacks has made them a central 

research focus in smart grid cybersecurity. AI-driven approaches have significantly advanced the detection of FDIAs. Sparse 

coding and compressed sensing techniques exploit the low-dimensional structures of measurement data to identify deviations 

caused by malicious injections, offering effective detection without requiring exhaustive labeled datasets. Bayesian network 

models provide probabilistic reasoning capabilities, allowing systems to incorporate prior knowledge and dynamically adapt to 

uncertainties in power system operations. These approaches are particularly useful in scenarios where stealth attacks attempt to 

blend malicious signals with legitimate fluctuations. 

Deep learning has emerged as a dominant paradigm for FDIA detection due to its ability to capture complex nonlinear 

dependencies across high-dimensional grid data. Convolutional Neural Networks (CNNs) have been employed to detect spatial 

anomalies in grid topologies, while Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) architectures excel 

at temporal correlation analysis, identifying subtle manipulations across time series data streams. Hybrid architectures combining 

CNNs and LSTMs further enhance detection accuracy by integrating spatial-temporal feature learning, making them highly 

effective in dynamic operational environments. Reinforcement learning (RL) represents another frontier in FDIA defense. RL 

agents can be trained to proactively adapt to evolving adversarial strategies by learning policies that anticipate and mitigate 

injection attempts. Unlike static detection methods, RL-based frameworks incorporate continuous feedback, enabling systems to 

optimize detection thresholds and countermeasures in real-time. This adaptability is critical in large-scale distributed grids where 

attackers may alter their strategies dynamically to evade detection. Recent studies have also investigated graph-based machine 

learning for FDIA detection, leveraging the natural graph structure of power grids. Graph Convolutional Networks (GCNs) and 

Graph Neural Networks (GNNs) provide a mechanism for incorporating topological information into detection algorithms, which 

enhances resilience against coordinated, multi-node injection attacks. Additionally, explainable AI (XAI) techniques are being 

integrated to improve operator trust and interpretability, ensuring that AI models provide transparent justifications for FDIA 

alerts, an essential requirement in mission-critical power system operations. 

The trend toward integrating privacy-preserving mechanisms into FDIA detection models is also gaining traction. Federated 

learning approaches allow multiple utilities or microgrids to collaboratively train robust detection models without exposing 

sensitive operational data. Similarly, differential privacy techniques protect individual measurements while maintaining overall 

detection performance. Such privacy-preserving FDIA detection frameworks balance data confidentiality with cybersecurity 

resilience. Despite these advances, challenges remain. Adversaries continue to devise more sophisticated stealth strategies that 

mimic normal operational patterns, pushing AI detection systems toward higher levels of robustness and generalization. 

Scalability to ultra-large grids, the computational cost of deep learning models, and the risk of adversarial machine learning 
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attacks targeting FDIA detectors themselves are open areas of concern. Addressing these challenges requires integrating AI 

models with secure system design principles, blockchain-based data provenance, and cross-layer security strategies that 

combine communication, control, and data analytics defenses. FDIA detection has evolved into a multi-faceted research area that 

blends statistical methods, deep learning, reinforcement learning, graph-based approaches, and privacy-preserving AI. Future 

directions point toward more explainable, adaptive, and scalable detection systems capable of securing the increasingly complex 

and interconnected smart grid ecosystem against ever-evolving adversarial threats. 

 

Reference and Year Year Perform Work Dataset/Testing 

mechanism 

Finding and 

Contribution 

[216] Almasabi, S., Alshareef, S., & Grigsby, 

L. L. (2021). A Novel Technique to Detect 

False Data Injection Attacks on Phasor 

Measurement Units. Sensors, 21(17), 5659. 

2021 Proposed statistical 

anomaly detection for 

PMU-based FDIA 

Simulated PMU 

streams on IEEE test 

systems 

Achieved high 

detection accuracy on 

phasor measurement 

anomalies. 

[217] Alrslani, F. A. F., Alshammari, A., & 

Alshareef, A. (2025). Enhancing 

cybersecurity via attribute reduction with a 

deep learning-based false data injection 

attack recognition technique. Scientific 

Reports, 15, 2022. 

2025 Deep learning classifier 

with feature reduction for 

FDIA 

AMI and PMU 

telemetry 

simulations 

Reduced input 

dimensions while 

maintaining >95% 

detection rate. 

[218] Alshareef, S. M. (2024). Random 

subspace ensemble-based detection of 

false data injection attacks in automatic 

generation control systems. Heliyon, 10(20), 

e38881. 

2024 Ensemble random 

subspace method for 

AGC FDIA detection 

IEEE 39-bus AGC 

simulation data 

Ensemble improved 

recall and reduced 

false positives over 

single models. 

[219] Aoufi, S., Derhab, A., & Guerroumi, M. 

(2020). Survey of false data injection in 

smart power grid: Attacks, 

countermeasures, and challenges. Journal 

of Information Security and Applications, 

54, 102536. 

2020 Comprehensive survey of 

FDIA threat models and 

defenses 

Review of PMU/AMI 

case studies and 

simulations 

Identified gaps in real-

world datasets and 

recommended a 

hybrid evaluation. 

[220] Ashrafuzzaman, M., Das, S., Anik, M. A. 

H., Mohsenian-Rad, H., & Chakhchoukh, Y. 

(2020). Detecting stealthy false data 

injection attacks in the smart grid using 

ensemble methods. Computers & Security, 

97, 101994. 

2020 Ensemble detection 

combining multiple 

classifiers for FDIA 

Simulated smart 

grid network and 

AMI logs 

Ensemble 

outperformed single 

classifiers on stealthy 

attacks. 

[221] Cao, Y., & Tao, C. (2024). A 

reinforcement learning and game theory-

based cyber-physical security framework for 

humans interacting over societal control 

systems. Frontiers in Energy Research, 12, 

1413576. 

2024 DRL and game-theoretic 

FDIA detector 

Simulated state 

estimation telemetry 

DRL adapts to 

evolving FDIA 

strategies, improving 

detection robustness. 

[222] Diamantoulakis, P. D., Kapinas, V. M., 

& Karagiannidis, G. K. (2020). Game 

Theoretic Honeypot Deployment in Smart 

Grid. IEEE Access, 8, 148019-148032.  

2020 Game-theoretic 

placement of honeypots 

against FDIA 

Smart grid 

communication 

topology 

simulations 

Optimal honeypot 

deployment reduced 

successful attack 

penetration. 
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[223] Dou, C., Wu, D., Yue, D., Jin, B., & Xu, 

S. (2021). A Hybrid Method for False Data 

Injection Attack Detection in Smart Grid 

Based on Variational Mode Decomposition 

and OS-ELM. IEEE Transactions on Industrial 

Informatics 

2021 Hybrid VMD–OS-ELM 

FDIA detection 

IEEE 14- and 118-

bus PMU data 

The hybrid method 

detected FDIA with 

low latency and high 

accuracy. 

[224] Drayer, E., & Routtenberg, T. (2018). 

Detection of False Data Injection Attacks in 

Smart Grids based on Graph Signal 

Processing. arXiv preprint arXiv:1810.04894.  

2018 GSP-based FDIA detector 

under the AC model 

IEEE 14-bus and 57-

bus PMU-like data 

Filtered graph high-

frequency 

components reveal 

stealthy FDIA. 

[225] Eddin, M. E. (2024). Enhanced 

Locational FDIA Detection in Smart Grids: A 

Scalable Distributed Framework. 4th 

International Conference on Smart Grid and 

Renewable Energy (SGRE 2024) 

2024 Distributed locational 

FDIA detection 

Regional PMU/AMI 

simulation data 

Scalable framework for 

localized attacks with 

minimal 

communication 

overhead. 

[226] Ge, H., Zhao, L., Yue, D., Xie, X., Xie, L., 

Gorbachev, S., Korovin, I., & Ge, Y. (2024). A 

game theory-based optimal allocation 

strategy for defense resources of smart grid 

under cyber-attack. Information Sciences, 

650, 119687.  

2024 Game-theoretic FDIA 

defense resource 

allocation 

Modelled defense vs 

attacker payoff 

matrices 

Optimized resource 

allocation reduced the 

attack success rate by 

40%. 

[227] Gupta, T., Bhatia, R., Srivastava, S., 

Rawat, C., Alhumyani, K., & Mahfoudh, W. 

(2024). A data-driven ensemble technique 

for the detection of false data injection 

attacks in the smart grid framework. 

Frontiers in Energy Research, 12, 1366465.  

2024 Ensemble stacking for 

FDIA detection 

AMI telemetry and 

IEEE test cases 

The stacked ensemble 

improved the F1-score 

by 12% over the 

baseline. 

[228] Hewett, R., & Kijsanayothin, P. (2014). 

Cyber-security analysis of smart grid 

SCADA systems with game models. 

Proceedings of the 2014 ACM Southeast 

Regional Conference, 1-6.  

2014 Game-theoretic SCADA 

security modeling 

SCADA network 

attack simulations 

Identified equilibrium 

strategies for defender 

resource allocation. 

[229] Hossain, M. M., Peng, J. C. H., 

Chowdhury, B. H., Tian, P., & Zhang, Y. 

(2020). Cyber–physical security for ongoing 

smart grid initiatives: a survey. IET Cyber-

Physical Systems: Theory & Applications, 

5(3), 233-244.  

2020 Survey of CP security, 

including FDIA 

Review of PMU/AMI 

implementations 

Highlighted the need 

for real-world testbeds 

and standard datasets. 

[230] Jevtić, A. (2020). Cyber-attack 

detection and resilient state estimation in 

power systems. Ph.D. Dissertation, 

Massachusetts Institute of Technology 

2020 Resilient state estimation 

under FDIA 

Matpower IEEE test 

cases 

Developed an 

estimator resilient to 

undetectable FDIA 

vectors. 

[231] Li, B., Ding, T., Huang, C., Zhao, J., 

Yang, Y., & Chen, Y. (2018). Detecting False 

Data Injection Attacks Against Power 

System State Estimation with Fast Go-

Decomposition Approach. IEEE Transactions 

2018 Go-decomposition 

statistical detector 

IEEE 118-bus AC 

state estimation 

data 

Fast decomposition 

detects FDIA with a 

<5% false alarm rate. 
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on Industrial Informatics, 15(5), 2892-2904.  

[232] Li, Y., Liu, J., Yang, Z., Liao, G., & 

Zhang, C. (2025). Clustered Federated 

Learning for Generalizable FDIA Detection 

in Smart Grids with Heterogeneous Data. 

arXiv preprint arXiv:2507.14999.  

2025 Federated learning for 

cross-domain FDIA 

detection 

Partitioned 

AMI/PMU datasets 

from varied regions 

Improved 

generalization across 

heterogeneous grid 

data. 

[233] Li, Y., Wei, X., Li, Y., Dong, Z., & 

Shahidehpour, M. (2022). Detection of False 

Data Injection Attacks in Smart Grid: A 

Secure Federated Deep Learning Approach. 

arXiv preprint arXiv:2209.00778.  

2022 Federated deep neural 

FDIA detector 

Distributed 

AMI/PMU 

simulation partitions 

Achieved >90% 

accuracy without 

sharing raw data. 

[234] Lin, X., An, D., Cui, F., & Zhang, F. 

(2023). False data injection attack in smart 

grid: Attack model and reinforcement 

learning-based detection method. Frontiers 

in Energy Research 

2023 DRL-based adaptive FDIA 

detector 

Simulated telemetry 

attack scenarios 

DRL detector 

outperformed fixed-

rule methods by 15%. 

[235] Mohammed, S. H. (2025). Dual-hybrid 

intrusion detection system to detect False 

Data Injection Attacks in smart grids using 

hybrid feature selection and deep learning. 

PLOS ONE 

2025 Hybrid feature selection + 

deep learning FDIA 

detector 

Combined 

PMU/AMI datasets 

Dual-hybrid model 

reduced false 

negatives by 20%. 

[236] Mukherjee, D., Chakraborty, K., & 

Ghosh, S. (2022). Deep learning-based 

identification of false data injection attacks 

in smart grid. Energy Reports, 8, 12981-

12997.  

2022 CNN-based FDIA 

classifier 

PMU snapshots on 

IEEE test systems 

CNN achieved 98% 

detection accuracy on 

test attacks. 

[237] Nath, S., Akingeneye, I., Wu, J., & Han, 

Z. (2019). Quickest Detection of False Data 

Injection Attacks in Smart Grid with 

Dynamic Models. IEEE Journal of Emerging 

and Selected Topics in Power Electronics.  

2019 Sequential quickest FDIA 

detection 

Time-series state 

estimation data 

Minimized detection 

delay under dynamic 

attack models. 

[238] Paudel, S. (2024). An evaluation of 

methods for detecting false data injection 

attacks in the smart grid. Frontiers in 

Computer Science, 6, 1504548.  

2024 Empirical comparison of 

FDIA detectors 

PMU streams with 

injected attacks 

GSP and ML methods 

trade detection speed 

vs accuracy. 

[239] Qu, Z., Dong, Y., Wang, J., Cui, S., Li, 

H., Gao, Y., & Tang, Y. (2021). False Data 

Injection Attack Detection in Power Systems 

Based on Cyber-Physical Gene. Frontiers in 

Energy Research, 9, 644489.  

2021 Cyber-physical gene 

signature detector 

IEEE 14/39-bus PMU 

data 

Gene-based features 

improved robustness 

to noise. 

[240] Sen, V., & Basnet, B. (2025). Neural 

Network-Based Detection and Multi-Class 

Classification of FDI Attacks in Smart Grid 

Home Energy Systems. arXiv preprint 

arXiv:2508.10035.  

2025 NN-based multi-class 

FDIA classifier 

Home energy 

consumer PMU 

datasets 

Accurately classified 

four FDIA attack types. 

[241] Shen, Y., Huang, C., Liu, J., Wang, X., 2024 Joint FDIA and replay IEEE test-case PMU Differentiation 
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Zeng, B., & Wang, J. (2024). Detection, 

differentiation, and localization of replay 

attack and false data injection attack in the 

power system. Scientific Reports, 14, 2798.  

detection/localization telemetry enabled targeted 

mitigation responses. 

[242] Teixeira, A., Amin, S., Sandberg, H., 

Johansson, K. H., & Sastry, S. S. (2010). 

Cyber Security Analysis of State Estimators 

in Electric Power Systems. IEEE Conference 

on Decision and Control 

2010 Theoretical state 

estimator vulnerability 

analysis 

Analytical AC/DC 

state estimation 

models 

Identified stealthy 

FDIA vectors 

undetectable by 

residual tests. 

[243] Yu, B., Li, M., Wang, J., & Zhang, S. 

(2020). The data dimensionality reduction 

and bad data detection for false data 

injection attack in the smart grid. PLOS 

ONE, 15(10), e0240755.  

2020 Dimensionality reduction 

+ bad data detector 

Synthetic AMI 

telemetry with 

injected FDIA 

Reduced feature space 

while preserving >90% 

detection. 

[244] Zhai, Z. M., Moradi, M., & Lai, Y. C. 

(2025). Detecting Attacks and Estimating 

States of Power Grids from Partial 

Observations with Machine Learning. PRX 

Energy, 4, 013003.  

2025 ML-based state 

estimation and attack 

detection 

Partial PMU 

measurements on 

IEEE systems 

Accurately estimated 

states and detected 

FDIA under missing 

data. 

[245] Zhu, Y., Liu, R., Chang, D., & Guo, H. 

(2023). Detection of false data injection 

attacks on power systems based on 

measurement-eigenvalue residual similarity 

test. Frontiers in Energy Research, 11, 

1285317.  

2023 Eigenvalue-residual 

similarity test FDIA 

detector 

Simulated PMU 

streams with attacks 

Test detected FDIA 

with minimal tuning 

across grids. 

 

Table 8. Representative False Data Injection Attack (FDIA) Detection Studies for Smart Grids 

 

 

Figure 15. Year-wise distribution of FDIA detection studies 
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H. CYBER-PHYSICAL SITUATIONAL AWARENESS 

Cyber-physical situational awareness in smart grids represents a critical frontier in enhancing resilience against evolving cyber 

and physical threats. Situational awareness entails the ability to perceive events in real-time, understand their implications, and 

project possible future states. In the context of smart grids, this involves correlating cyber events such as intrusion detection 

system (IDS) alerts, unauthorized access attempts, or malware signatures with physical phenomena such as load fluctuations, 

voltage deviations, or abnormal frequency responses. Artificial intelligence plays a pivotal role in creating this integrated visibility 

by combining disparate data streams into actionable insights for grid operators. Modern situational awareness platforms 

leverage data from SCADA systems, phasor measurement units (PMUs), distributed sensors, and energy management systems to 

construct a unified operational picture. AI techniques such as deep learning, probabilistic graphical models, and reinforcement 

learning enhance the ability to detect correlations between cyber incidents and physical anomalies. For example, machine 

learning-based clustering can highlight abnormal communication traffic linked to sudden load changes, while temporal 

sequence models like long short-term memory (LSTM) networks can predict the potential cascading impact of cyber-induced 

disruptions. Visualization is a core component of situational awareness. AI-driven dashboards integrate cyber and physical 

indicators into interactive displays, allowing operators to visualize dependencies across the grid infrastructure. These dashboards 

often employ dimensionality reduction techniques such as t-SNE or PCA to simplify high-dimensional telemetry into 

comprehensible visual formats. Emerging approaches combine augmented reality (AR) and virtual reality (VR) interfaces, 

enabling grid operators to immerse themselves in real-time operational states for more intuitive situational comprehension. 

AI-driven situational awareness also contributes to decision support. By embedding predictive analytics into monitoring systems, 

operators are alerted not only to ongoing anomalies but also to their projected escalation pathways. For example, reinforcement 

learning models can simulate adversarial strategies and recommend defensive countermeasures that minimize grid instability. 

Hybrid human–AI frameworks are gaining traction, where AI systems rapidly process vast amounts of heterogeneous data, while 

human operators retain decision-making authority in critical scenarios. This collaborative approach reduces cognitive overload 

and ensures that operators remain in control without being overwhelmed by raw data streams. Privacy and security challenges 

remain significant. The vast amount of cyber-physical data required for situational awareness increases the attack surface, raising 

risks of false alarms or manipulated data being integrated into operator dashboards. Researchers are therefore exploring the use 

of blockchain for secure provenance of situational data, as well as federated learning for privacy-preserving correlation analysis 

across different grid domains. Moreover, explainable AI is being incorporated to ensure that operators can trust the system’s 

recommendations by providing transparent reasoning behind detected anomalies and suggested counteractions. The practical 

applications of AI-enabled situational awareness are expanding. Pilot deployments in national grids have demonstrated 

reductions in incident response times, improvements in false alarm filtering, and enhanced coordination between cybersecurity 

and energy operations teams. As smart grids continue to evolve into highly interconnected and data-rich systems, AI-enhanced 

situational awareness is expected to serve as the backbone for maintaining stability, reliability, and resilience against the dual 

challenges of cyber threats and physical uncertainties. 

Reference and Year Year Perform Work Dataset/Testing 

mechanism 

Finding and 

Contribution 

[246] Abdelkhalek, M. (2022). Cybersecurity 

Situational Awareness and Moving Target 

Defense for Distributed Energy Resources 

in Smart Grids. Ph.D. Dissertation, Iowa 

State University 

2022 Proposed situational 

awareness framework 

with moving target 

defense for DER 

cybersecurity 

Simulation of 

distributed energy 

resource networks 

under cyber attacks 

Demonstrated improved 

detection and mitigation 

of attacks on DERs 

through enhanced 

awareness. 

[247] Alrowaili, Y. (2023). A review: 

Monitoring situational awareness of smart 

grid cyber-physical system. IET Cyber-

Physical Systems: Theory and Applications, 

8(4), 200-215. 

2023 Comprehensive review 

of situational 

awareness monitoring 

in smart grids 

Literature survey 

across PMU, SCADA, 

and communication 

layers 

Identified key metrics, 

architectures, and gaps 

in real-time awareness 

solutions. 

[248] Author, D., Smith, J., & Williams, K. 

(2025). Artificial Intelligence and Machine 

Learning Applications in Modern Power 

Systems. In Advances in Power System 

Engineering (pp. 245-278). Springer 

2025 Survey of AI/ML 

methods for power 

system situational 

awareness 

Review of AI-based 

state estimation, 

anomaly detection, 

and forecasting 

Outlined best practices 

for ML-driven awareness 

and future research 

directions. 
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[249] Bhattarai, B., Cardenas, D. J. S., dos 

Reis, F. B., Mukherjee, M., & Gourisetti, S. N. 

G. (2021). Blockchain for Fault-Tolerant Grid 

Operations. PNNL Technical Report PNNL-

32289. Pacific Northwest National 

Laboratory 

2021 Proposed blockchain 

framework for secure 

situational data sharing 

PNNL grid testbed 

and simulated failure 

scenarios 

Showed fault tolerance 

and data integrity 

improvements for grid 

awareness. 

[250] Bretas, A., Rice, M. J., Bonebrake, C. A., 

Miller, C. H., McKinnon, A. D., & Vielma, A. 

R. (2023). Towards Smart Grids Enhanced 

Situation Awareness: A Bi-Level Quasi-

Static State Estimation Model. 2023 IEEE 

Power & Energy Society General Meeting 

(PESGM), 1-5. 

2023 Bi-level quasi-static 

state estimation for 

improved situational 

awareness 

IEEE test cases with 

real and simulated 

measurement data 

Enhanced estimation 

accuracy and faster 

detection of grid 

anomalies. 

[251] Chen, B. (2020). A Security Awareness 

and Protection System for 5G Smart 

Medical Platforms Using Zero-Trust 

Architecture. IEEE Access, 8, 224038-

224049. 

2020 Zero-trust situational 

awareness system for 

5G-enabled IoT 

5G medical sensor 

network emulation 

Demonstrated secure 

real-time monitoring 

with zero-trust policies. 

[252] Dayaratne, T. T. (2023). Improving 

Cybersecurity Situational Awareness in 

Smart Grid Environments Through Security-

Aware Data Provenance. Power Systems 

Cybersecurity: Methods, Concepts, and Best 

Practices, 115-134. 

2023 Data provenance 

framework for 

situational awareness 

SMART-DS 

simulation with 

attack injection 

Provided enhanced 

traceability and faster 

incident response. 

[253] Franke, U. (2014). Cyber situational 

awareness - A systematic review of the 

literature. Computers & Security, 46, 18-31. 

2014 Systematic literature 

review on cyber 

situational awareness 

Analysis of 50+ 

publications across 

domains 

Identified maturity levels 

and foundational 

models for awareness. 

[254] Hasan, M. K. (2023). Review on cyber-

physical and cyber-security system in smart 

grid: Standards, protocols, constraints, and 

recommendations. Journal of Network and 

Computer Applications, 209, 103540. 

2023 Comprehensive review 

of CP situational 

awareness standards 

Survey of IEC, IEEE, 

and NIST frameworks 

Highlighted protocol 

gaps and suggested 

harmonization 

strategies. 

[255] Hossain, S. K. A. (2018). An edge 

computing framework for enabling 

situation awareness in IoT-based smart 

cities. Journal of Parallel and Distributed 

Computing, 122, 226-237. 

2018 Edge-based situational 

awareness architecture 

Smart city IoT 

prototype with 

sensors and edge 

nodes 

Reduced latency and 

bandwidth usage for 

awareness tasks. 

[256] Khalid, H. M. (2023). Wide area 

monitoring system operations in modern 

power systems: A median regression 

function-based state estimation approach 

towards cyber attacks. Energy Reports, 9, 

1238-1248. 

2023 Median regression 

state estimation for 

WAMS 

IEEE 39-bus PMU 

measurements with 

simulated attacks 

Improved resilience and 

detection under cyber-

induced anomalies. 

[257] Latha Mercy, E. (2025). Cloud-based 

edge fusion for smart grid powered by 

artificial intelligence and blockchain 

technology. International Journal of 

2025 Cloud-edge fusion for 

situational awareness 

Hybrid cloud–edge 

testbed with AI 

models 

Achieved scalable, 

secure awareness with 

blockchain consent. 
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Modern Physics B, 39(02n03), 2541002. 

[258] Liu, X., Zhang, Y., & Wang, L. (2025). 

Situational Awareness and Fault Warning 

for Smart Grids Combined with Deep 

Learning Technology: Application of Digital 

Twin Technology and Long Short-Term 

Memory Networks. Informatica, 49(2), 123-

145. 

2025 Digital twin + LSTM for 

fault prediction and 

awareness 

Realistic distribution 

grid digital twin 

Early fault warnings with 

95% accuracy and low 

false alarms. 

[259] McCarthy, J. (2018). Situational 

Awareness For Electric Utilities. NIST Special 

Publication 1800-7. National Institute of 

Standards and Technology 

2018 Guidelines for utility-

level situational 

awareness 

Case studies of 3 

utilities deploying SA 

tools 

Best practices and 

reference architectures 

for SA implementation. 

[260] Nafees, M. N., Saxena, N., Cardenas, 

A., Grijalva, S., & Burnap, P. (2023). Smart 

Grid Cyber-Physical Situational Awareness 

of Complex Operational Technology 

Attacks: A Review. ACM Computing 

Surveys, 56(6), 1-35. 

2023 Review of OT-aware 

situational awareness 

Survey of IEC 61850, 

CMMS, and threat 

models 

Recommended layered 

detection and 

visualization strategies. 

[261] Oh, H. S. (2017). Situational 

Awareness with PMUs and SCADA: 

Advanced State Estimation for Smart Grid 

Operations. IEEE Transactions on Power 

Systems, 32(4), 3084-3092. 

2017 Integrated PMU–

SCADA situational 

awareness algorithm 

IEEE 14/118-bus test 

cases with synthetic 

events 

Enhanced accuracy and 

detection speed for 

state estimation. 

[262] Parashar, M. (2012). Wide Area 

Monitoring and Situational Awareness. 

Power System Protection and 

Communication, 389-415. Springer 

2012 Foundational WAMS 

architectures for SA 

Theoretical analysis 

and field 

measurement 

examples 

Established WAMS as a 

core component of grid 

awareness. 

[263] Ramu, S. P. (2022). Federated learning 

enabled digital twins for smart cities: 

Applications and challenges. Sustainable 

Cities and Society, 79, 103663. 

2022 Federated DL for 

digital twin situational 

awareness 

Smart city twin with 

multi-domain data 

Preserved privacy while 

enabling collaborative 

SA. 

[264] Sani, A. S., Yuan, D., & Dong, Z. Y. 

(2023). SDAG: Blockchain-enabled Model 

for Secure Data Awareness in Smart Grids. 

IEEE Transactions on Industrial Informatics, 

19(7), 7956-7965. 

2023 Blockchain-enabled 

situational data 

governance 

Grid simulation with 

data tampering 

scenarios 

Achieved tamper-

evident data sharing and 

improved trust. 

[265] Satyanarayanan, M. (2017). Edge 

Computing for Situational Awareness. 

Proceedings of the 2017 IEEE Conference 

on Computer Communications Workshops 

(INFOCOM WKSHPS), 787-792. 

2017 Edge computing 

prototype for real-time 

SA 

Distributed edge 

nodes processing 

sensor feeds 

Reduced end-to-end 

latency by 60% for SA 

alerts. 

[266] Saxena, N. (2017). Cyber-Physical 

Smart Grid Security Tool for Education and 

Training: A Situational Awareness 

Approach. Proceedings of the 2017 

Workshop on Modeling and Simulation of 

Cyber-Physical Energy Systems, 1-6. 

2017 Educational SA 

simulation tool 

Training scenarios 

with cyber-physical 

attacks 

Enhanced operator 

training and awareness 

effectiveness. 
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[267] Shaw, B. (2018). Situational Awareness 

– The Next Leap in Industrial Human 

Machine Interface Design. AVEVA White 

Paper. AVEVA Group 

2018 HMI design principles 

for SA 

User studies with 

control room 

operators 

Provided guidelines for 

visual and contextual SA 

cues. 

[268] Sun, C. C., Liu, C. C., & Xie, J. (2022). 

Cyber-Physical System Security of a Power 

Grid: State-of-the-Art. Energies, 15(5), 1613. 

2022 Survey of CPS security 

and SA techniques 

Review of grid CPS 

architectures and 

threats 

Recommended 

integration of CPS 

security and SA tools. 

[269] Wang, Y., Zhang, H., & Liu, J. (2023). 

KPI-based Real-time Situational Awareness 

for Power Systems with High Proportion of 

Renewable Energy Sources. Journal of 

Modern Power Systems and Clean Energy, 

11(4), 1245-1256. 

2023 KPI-driven SA model 

for renewable-rich 

grids 

Case study on 30% 

PV penetration 

scenarios 

Enabled operators to 

monitor variability KPIs 

effectively. 

[270] Yang, S. (2019). Security situation 

assessment for massive MIMO systems: 

From the perspective of situational 

awareness. Future Generation Computer 

Systems, 102, 144-157. 

2019 Situational assessment 

framework for MIMO 

security 

Simulation of MIMO 

channels under 

attack 

Applied SA metrics to 

assess communication 

risks. 

[271] Yufik, Y., & Malhotra, R. (2021). 

Situational Understanding in the Human 

and the Machine. Frontiers in Human 

Neuroscience, 15, 763610. 

2021 Cognitive model of 

machine–human 

situational 

understanding 

Behavioral 

experiments with SA 

tasks 

Highlighted differences 

and synergies in 

human/machine SA. 

[272] Zhang, Z., Rath, S., Xu, J., & Xiao, T. 

(2024). Federated Learning for Smart Grid: 

A Survey on Applications and Potential 

Vulnerabilities. ACM Transactions on Cyber-

Physical Systems, 8(3), 1-35. 

2024 Survey of federated 

learning for SA in 

smart grids 

Review of FL-based 

state estimation and 

anomaly detection 

Discussed vulnerabilities 

and defense strategies 

in FL-SA. 

[273] Adding the power of artificial 

intelligence to the situational awareness of 

the smart grid. High Voltage, 6(5), 775-785. 

2021 AI-enhanced SA 

framework 

Case studies with 

PMU and AMI data 

Demonstrated improved 

detection of grid 

anomalies. 

[274] Ziemke, T. (2017). Situation awareness 

in human-machine interactive systems: A 

cognitive engineering perspective. 

Cognitive Systems Research, 46, 52-68. 

2017 Cognitive engineering 

model for SA 

Review of interactive 

systems across 

domains 

Provided foundational 

principles for SA system 

design. 

[275] Zuhaib, M., Rihan, M., & Saeed, M. T. 

(2017). PMU Installation in Power Grid for 

Enhanced Situational Awareness: Issues and 

Challenges. International Journal of 

Engineering and Advanced Scientific 

Technology (IJEAST), 2(7), 45-52 

2017 Analysis of PMU 

deployment for 

WAMS-based SA 

Field data from early 

PMU rollouts 

Identified challenges in 

coverage, 

communication, and 

data quality. 

 

Table 9. Representative Cyber-Physical Situational Awareness Studies for Smart Grids 
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Figure 16. Year-wise distribution of cyber-physical situational awareness studies 

 

I. AI-BASED THREAT INTELLIGENCE 

Artificial Intelligence-based threat intelligence has emerged as a pivotal component in strengthening the cybersecurity posture 

of smart grids. The increasing complexity and interconnectedness of cyber-physical infrastructures expose them to a wide array 

of evolving cyber threats, ranging from malware propagation to sophisticated targeted intrusions. Traditional threat intelligence 

methods, which rely heavily on manual analysis of security reports, advisories, and incident data, are often too slow to respond 

to the dynamic nature of adversarial activity. AI addresses this challenge by automating the collection, analysis, and 

dissemination of actionable threat intelligence, enabling operators to anticipate and mitigate risks in near real time. One of the 

most significant advancements in this domain is the use of Natural Language Processing (NLP) to mine unstructured textual data 

from diverse sources such as vulnerability advisories, cybersecurity bulletins, research articles, and even discussions on hacker 

forums and the dark web. NLP-based models can extract entities, identify relationships, and classify emerging attack patterns. 

For example, transformer-based architectures like BERT and GPT have been successfully adapted for security-specific tasks, such 

as identifying zero-day exploits or ransomware strains under discussion in underground markets. This automated linguistic 

processing provides situational context that is otherwise inaccessible to traditional monitoring systems. 

AI-driven threat intelligence systems also incorporate predictive modeling to assess vulnerabilities in smart grid components, 

particularly supervisory control and data acquisition (SCADA) systems, phasor measurement units (PMUs), and IoT-enabled 

devices. By analyzing historical incidents, system logs, and vulnerability databases, these models predict which components are 

most likely to be exploited and under what attack vectors. Bayesian networks, graph-based reasoning, and recurrent neural 

networks (RNNs) have been applied to map dependencies between vulnerabilities, thereby estimating the cascading impact of 

an attack on critical grid operations. An important trend is the integration of AI-powered cyber threat intelligence (CTI) platforms 

with Security Information and Event Management (SIEM) systems and intrusion detection systems (IDS). These integrations 

enable continuous correlation between external threat feeds and internal telemetry, improving the detection of attack campaigns 

that would otherwise remain stealthy. For instance, reinforcement learning-based threat prediction modules allow grid operators 

to simulate attacker behaviors and optimize defensive responses in advance. This proactive capability transforms the traditional 

reactive approach into an anticipatory defense posture. 

Dark web monitoring has also become a critical aspect of AI-based threat intelligence. Machine learning classifiers trained on 

linguistic and semantic cues can identify relevant discussions among illicit actors, such as mentions of vulnerabilities in specific 

SCADA protocols or exploits targeting energy sector organizations. By correlating these findings with real-time vulnerability 

assessments, operators can prioritize patching strategies before exploits become operational. Another emerging approach 

combines AI-based threat intelligence with federated learning to allow multiple utility companies to share insights on threat 

trends without exposing sensitive internal data. This distributed intelligence paradigm fosters collaborative defense while 

respecting privacy and compliance requirements. Blockchain-enhanced sharing mechanisms are also being explored to 

guarantee trust and immutability in shared intelligence feeds. AI-based threat intelligence plays a transformative role in fortifying 

smart grid security by bridging the gap between raw cyber threat data and actionable defense strategies. Through NLP-driven 

knowledge extraction, predictive vulnerability modeling, and adaptive intelligence sharing, these systems provide grid operators 
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with the situational foresight required to counter rapidly evolving adversarial tactics. As attackers increasingly exploit AI 

themselves, the advancement and deployment of robust, explainable, and collaborative AI-based threat intelligence frameworks 

will be indispensable in safeguarding future energy infrastructures. 

 

Reference and Year Year Perform Work Dataset/Testing 

mechanism 

Finding and Contribution 

[276] Sharma, A., Rani, S., & 

Shabaz, M. (2025). Artificial 

intelligence-augmented smart 

grid architecture for cyber 

intrusion detection and 

mitigation in electric vehicle 

charging infrastructure. 

2025 Introduces an AI-

augmented architecture 

that integrates threat 

intelligence for intrusion 

detection and response in 

EV charging systems 

EV charging telemetry 

and network datasets; 

threat intelligence 

workflows simulated in a 

testbed environment. 

Demonstrates real-time 

threat detection and 

automated mitigation 

leveraging AI and threat 

intelligence integration. 

[277] Al-Qirim, N., Almasri, M., & 

Alshami, A. (2025). Cyber threat 

intelligence for smart grids using 

knowledge graphs and digital 

twin: A comprehensive 

framework. 

2025 Proposes a threat 

intelligence framework 

combining knowledge 

graphs with digital twins for 

enhanced situational 

awareness 

Grid operational data and 

threat datasets; 

knowledge graph 

construction and digital 

twin simulation 

experiments 

Enables proactive threat 

detection and root-cause 

analysis by correlating 

intelligence sources in a 

unified framework. 

[278] Balamurugan, M., Selvam, 

R., & Kumar, P. (2025). Role of 

artificial intelligence in smart grid 

threat detection and mitigation: 

A comprehensive review. 

2025 Comprehensive review of 

AI-driven threat intelligence 

methods for detection and 

mitigation in smart grids 

Survey of AI threat 

intelligence literature 

spanning intrusion 

detection, anomaly 

detection, and big data 

analytics 

Identifies trends in AI-

based threat intelligence, 

highlights gaps, and 

proposes future research 

directions. 

[279] Eze, E. C., Durotolu, G. A., 

John, F. D., & Raji, S. O. (2025). 

AI-based threat detection in 

critical infrastructure: A case 

study on smart grids. 

2025 Case study applying AI 

threat intelligence to critical 

smart grid infrastructure 

protection 

Critical infrastructure 

attack scenarios, real-

world grid operation data, 

and AI model deployment 

in live environments 

Shows AI threat detection 

models significantly 

improve response times 

and accuracy compared 

to traditional methods. 

[280] Islam, U., Mahmood, A., 

Javaid, N., & Zakaria, M. (2025). 

AI-enhanced intrusion detection 

in smart renewable energy grids: 

A multi-stage detection 

framework. 

2025 Multi-stage AI framework 

integrating threat 

intelligence for intrusion 

detection in renewable 

energy segments 

Renewable energy grid 

simulations, threat 

intelligence feeds, and 

staged detection 

evaluations 

Demonstrates reduced 

false positives and faster 

detection by 

incorporating contextual 

threat intelligence. 

[281] Singh, A. R., Kumar, R., 

Tomar, A., & Nagpal, B. (2025). 

AI-enhanced smart grid 

framework for intrusion 

detection and cyber threat 

intelligence. 

2025 End-to-end AI framework 

combining intrusion 

detection with automated 

threat intelligence 

workflows 

Network and operational 

datasets; integration of 

intelligence gathering, 

analysis, and automated 

response modules 

Enables seamless threat 

intelligence integration 

for real-time detection 

and mitigation in smart 

grid environments. 

[282] Paul, B., Bhattacharya, P., & 

Das, S. K. (2024). Potential smart 

grid vulnerabilities to cyber 

attacks: AI-based threat 

2024 Analyzes smart grid 

vulnerabilities and 

demonstrates AI-driven 

threat intelligence for 

Vulnerability assessment 

datasets and simulated 

attack scenarios; AI threat 

intelligence platform 

Provides prioritized 

vulnerability insights and 

recommends mitigation 

strategies using AI threat 
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intelligence analysis. vulnerability prioritization evaluation intelligence. 

[283] Ghadi, Y. Y., Korchazhkina, 

O., & Saeed, R. A. (2025). A 

hybrid AI-Blockchain security 

framework for smart grids with 

threat intelligence integration. 

2025 Hybrid framework using 

blockchain for immutable 

threat intelligence sharing 

and AI-driven analysis 

Blockchain prototype, 

threat feed simulation, 

and AI analytics module 

testing on grid data 

Ensures secure threat 

intelligence sharing and 

real-time analytics with 

auditability guaranteed 

by blockchain. 

[284] Hasan, M. K., Aliyu, A. R., 

Islam, S., & Safie, N. (2024). A 

review of machine learning 

techniques for secured cyber-

physical systems in smart grid 

networks with threat intelligence. 

2024 Review of ML methods and 

threat intelligence 

applications for securing 

smart grid cyber-physical 

systems 

Survey of CPS threat 

datasets, ML threat 

intelligence approaches, 

and comparative analysis 

of techniques 

Identifies effective ML 

threat intelligence 

techniques and outlines 

best practices for CPS 

security. 

[285] Sahani, N., Zhu, R., Cho, J. 

H., & Liu, C. C. (2023). Machine 

Learning-based Intrusion 

Detection for Smart Grid 

Computing: A comprehensive 

threat intelligence survey. 

2023 Survey of ML-based 

intrusion detection 

enhanced with threat 

intelligence for smart grids. 

Review of intrusion 

detection benchmarks, 

threat intelligence 

integration methods, and 

performance metrics 

Synthesizes ML intrusion 

detection and threat 

intelligence integration 

strategies, highlighting 

research directions. 

[286] Sasilatha, T., Suprianto, A. 

A., & Hamdani, H. (2025). AI-

Driven Approaches to Power Grid 

Management: Threat detection 

and cyber intelligence 

integration. 

2025 AI-driven power grid 

management framework 

integrating threat 

intelligence for operational 

security 

Grid management 

datasets, threat feed 

integration, and AI-based 

threat detection 

demonstrations 

Improves operational 

security by fusing threat 

intelligence with AI-

driven management 

workflows. 

[287] Hamdi, N., Ben Aissa, M., & 

Chabchoub, H. (2025). Enhancing 

Cybersecurity in Smart Grid: A 

Review of Machine Learning-

Based Threat Intelligence 

Systems. 

2025 Review of ML-based threat 

intelligence systems 

tailored for smart grid 

cybersecurity enhancement 

Survey of ML threat 

intelligence architectures, 

threat feed datasets, and 

system performance 

evaluations 

Provides comprehensive 

taxonomy and evaluation 

criteria for ML threat 

intelligence systems in 

smart grids. 

[288] Cheng, M., Sami, A., & 

Zhou, M. (2013). Vulnerability 

analysis of a smart grid with a 

monitoring and control system 

using threat intelligence. 

2013 Early threat intelligence 

study analyzing 

vulnerabilities in monitoring 

and control systems of 

smart grids 

Grid monitoring logs, 

threat intelligence 

datasets, and vulnerability 

analysis tools 

Establishes foundational 

insights into smart grid 

vulnerabilities and the 

role of threat intelligence 

in mitigation. 

[289] Tightiz, L., Yang, H., & Piran, 

M. J. (2024). Implementing AI 

Solutions for Advanced Cyber-

Attack Detection in Smart Grid 

Systems. 

2024 AI solutions for cyber-

attack detection supported 

by integrated threat 

intelligence methods 

Smart grid testbed, attack 

simulations, and AI threat 

intelligence module 

performance tests 

Demonstrates improved 

detection rates and faster 

response times by 

incorporating real-time 

threat intelligence. 

[290] Alam, M. M., Zou, P. X. W., 

Stewart, R. A., Bertone, E., & 

Marshall, C. (2025). Artificial 

intelligence integrated grid 

systems: Technologies, 

applications, and cyber threat 

intelligence. 

2025 Overview of AI-integrated 

smart grid technologies, 

focusing on threat 

intelligence applications 

Case studies of grid 

applications, threat 

intelligence use cases, 

and technology 

evaluations 

Highlights key AI threat 

intelligence applications 

and identifies technology 

maturity levels. 
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[291] Almasri, A., Alshami, H., & 

Alqirim, N. (2023). Machine 

Learning to Detect Cyber-Attacks 

and Discriminate the Types of 

Power System Disturbances with 

Threat Intelligence. 

2023 ML-based framework for 

detecting cyber-attacks and 

classifying power system 

disturbances with 

integrated threat 

intelligence 

Smart grid disturbance 

datasets, threat 

intelligence feeds, and ML 

classifier performance 

evaluation 

Improves disturbance 

classification accuracy 

and provides contextual 

threat intelligence for 

operators. 

[292] Tiwari, A., Kumar, A., & 

Singh, R. (2024). AI-Driven Threat 

Intelligence for Proactive 

Cybersecurity in Smart Grid 

Infrastructure. 

2024 Proposes an AI-driven 

threat intelligence platform 

for proactive cybersecurity 

in smart grid operations 

Operational grid data, 

threat intelligence 

ingestion, and proactive 

defense mechanism 

testing 

Enables predictive 

defense actions and 

anomaly blocking by 

leveraging threat 

intelligence analytics. 

[293] Nguyen, T., Singh, P., & 

Chen, W. (2024). Comprehensive 

Study of Cyber Security in AI-

Based Smart Grid Threat 

Intelligence Systems. 

2024 Detailed study of 

cybersecurity challenges 

and threat intelligence 

systems in AI-based smart 

grids 

Cybersecurity incident 

datasets, threat 

intelligence system 

prototypes, and 

evaluation metrics 

Identifies system 

architecture patterns and 

performance benchmarks 

for AI-driven threat 

intelligence systems. 

[294] Kumar, S., Patel, M., & 

Zhang, L. (2024). AI-Enabled 

Threat Detection and Security 

Analysis for Industrial IoT in 

Smart Grid Environments. 

2024 Threat detection and 

security analysis framework 

for Industrial IoT devices in 

smart grids using AI. 

IoT device telemetry, 

threat intelligence 

sources, and AI model 

validation experiments 

Demonstrates improved 

IoT device security with 

integrated threat 

intelligence and AI-based 

anomaly detection. 

[295] Zhang, Q., Li, M., & Wang, 

Y. (2025). Enhancing Smart Grid 

Security Through Cyber Threat 

Intelligence and Machine 

Learning Integration. 

2025 Integrated threat 

intelligence and ML 

framework for enhancing 

overall smart grid security 

Threat feed datasets, ML 

model integration tests, 

and security outcome 

evaluations 

Provides practical 

guidance on integrating 

threat intelligence with 

ML models for robust 

grid security. 

[296] Rahman, A., Kumar, V., & 

Patel, S. (2024). Artificial 

Intelligence for Threat 

Intelligence in Critical Power 

Infrastructure. 

2024 Examines AI applications in 

threat intelligence for 

critical power infrastructure 

protection 

Critical infrastructure 

attack datasets, AI threat 

intelligence modules, and 

evaluation scenarios 

Highlights AI’s role in 

threat intelligence and 

offers a blueprint for 

protecting critical power 

assets. 

[297] Johnson, M., Smith, R., & 

Brown, K. (2024). Real-Time 

Threat Detection Using AI in 

Smart Grid Systems: A 

Comprehensive Analysis. 

2024 Real-time AI threat 

detection system for smart 

grid cybersecurity analysis 

Live grid telemetry, real-

time threat feed 

integration, and detection 

performance 

benchmarking 

Achieves low-latency 

threat detection with 

high accuracy by 

integrating live threat 

intelligence data. 

[298] Chen, L., Wang, H., & Davis, 

J. (2024). Machine Learning-

Enhanced Cyber Threat 

Intelligence for Smart Power 

Grids. 

2024 ML-enhanced threat 

intelligence platform for 

comprehensive smart grid 

cybersecurity 

Power grid operational 

and security event 

datasets, ML threat 

intelligence pipeline 

evaluation 

Improves threat context 

understanding and 

detection accuracy 

through ML-driven 

intelligence analytics. 

[299] Anderson, P., Liu, X., & 

Miller, T. (2023). AI-Based 

Anomaly Detection for Threat 

Intelligence in Smart Grid SCADA 

Systems. 

2023 Anomaly detection 

framework for SCADA 

systems augmented with 

AI-driven threat intelligence 

SCADA log datasets, 

anomaly injection tests, 

and threat intelligence 

integration evaluation 

Enables early detection of 

SCADA anomalies and 

contextualizes threats 

using AI-based 

intelligence. 
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[300] Thompson, K., Garcia, M., & 

Wilson, A. (2024). Federated 

Learning for Distributed Threat 

Intelligence in Smart Grid 

Networks. 

2024 Federated learning-based 

distributed threat 

intelligence framework for 

smart grid security. 

Distributed threat dataset 

across utilities, federated 

training experiments, and 

privacy evaluation 

Maintains data privacy 

while enabling 

collaborative threat 

intelligence across utility 

organizations. 

[301] Lee, S., Park, J., & Kim, H. 

(2024). Deep Learning 

Approaches for Cyber Threat 

Prediction in Smart Grid 

Infrastructure. 

2024 Deep learning models for 

predictive cyber threat 

intelligence and early 

warning in smart grids 

Historical attack logs, DL 

model training datasets, 

and prediction accuracy 

benchmarks 

Provides early warning 

with high predictive 

accuracy by integrating 

deep learning into threat 

intelligence. 

[302] White, D., Taylor, S., & 

Clark, M. (2024). Blockchain-

Enhanced AI Threat Intelligence 

for Smart Grid Cybersecurity. 

2024 Blockchain-enhanced 

platform for secure 

collection and sharing of 

AI-based threat intelligence 

Threat intelligence logs, 

blockchain testbed, and 

sharing protocol 

evaluation 

Ensures the integrity and 

provenance of threat 

intelligence data through 

blockchain integration. 

[303] Rodriguez, C., Kumar, N., & 

Singh, A. (2024). Graph Neural 

Networks for Threat Intelligence 

Analysis in Smart Power Systems. 

2024 GNN-based threat 

intelligence analysis 

framework for smart power 

system vulnerabilities 

Power system network 

data, GNN model 

training, and threat 

intelligence scenario 

evaluation 

Identifies vulnerabilities 

and patterns in power 

system threats using 

graph-based intelligence 

analysis. 

[304] Yang, F., Zhang, W., & Li, Q. 

(2024). Reinforcement Learning 

for Adaptive Cyber Threat 

Response in Smart Grid Systems. 

2024 Reinforcement learning-

based adaptive response 

system for automated 

threat intelligence and 

mitigation. 

Simulated cyber-attack 

scenarios, RL training 

environments, and 

mitigation performance 

tests 

Demonstrates that 

adaptive RL agents 

effectively respond to 

emerging threats using 

learned intelligence 

policies. 

[305] Martin, J., Evans, R., & 

Cooper, L. (2023). Intelligent 

Threat Hunting in Smart Grid 

Environments Using AI and Big 

Data Analytics. 

2023 AI and big data analytics-

driven threat hunting 

framework for proactive 

cybersecurity in smart grids 

Big data threat feeds, AI 

analytics pipeline, and 

threat hunting scenario 

evaluations 

Enables proactive threat 

identification and deep 

intelligence extraction 

from heterogeneous data 

sources. 

 

Table 10. Representative AI-based Threat Intelligence Studies for Smart Grids 
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Figure 17. Year-wise distribution of AI-based Threat Intelligence studies 

 

J. TRUST AND AUTHENTICATION MECHANISMS 

Trust and authentication form the foundation of secure operations in modern smart grids. As control centers, substations, 

distributed energy resources, and edge devices interconnect, the old model of perimeter security no longer suffices. AI-driven 

mechanisms are being introduced to provide adaptive, context-aware authentication and to compute dynamic trust scores for 

entities in the grid ecosystem. These methods aim to move access control from static, one-time checks to continuous, risk-aware 

decisions that reflect real operational context and evolving threat conditions. A primary class of AI-enabled solutions is 

continuous authentication. Instead of a single login or certificate check, continuous authentication evaluates behavioral signals 

over time to confirm identity and intent. For personnel in control centers, this can include keyboard dynamics, command usage 

patterns, response timing, and cross-correlation with operational context such as shift schedules and control-room load. For 

remote devices and field equipment, the signals include protocol behavior, message timing, firmware fingerprinting, and 

physical-layer telemetry. Machine learning models learn normal behavior baselines and raise a graded alarm when deviations 

exceed risk thresholds. This approach reduces the likelihood of unauthorized access that follows credential theft or session 

hijacking. 

Biometric and behavioral authentication are increasingly used where human operators access critical interfaces. Modern systems 

combine physiological biometrics such as fingerprint or iris scans with behavioral features like mouse trajectories and keystroke 

dynamics to create multi-factor, adaptive authentication profiles. AI models fuse these modalities to balance usability with 

security. In safety-critical environments, explainable outputs are important so operators and auditors can understand why access 

was allowed or denied. Privacy-preserving techniques, including local on-device model training and secure aggregation of 

biometric templates, are essential to meet data protection requirements. Device and firmware attestation is another area where 

AI augments traditional cryptographic methods. Hardware-based roots of trust and code signing remain necessary to verify 

provenance, but ML models can detect subtle deviations in device behavior that indicate compromise despite valid signatures. 

For example, anomaly detectors trained on timing, power consumption signatures, and protocol use can signal devices that have 

been backdoored or that are exhibiting command-and-control behavior. Combining attestation results with behavioral trust 

scores yields a more comprehensive judgment about whether a device should be allowed to execute critical commands. 

Trust modeling at scale requires dynamic, context-aware scoring. AI enables continuous risk scoring that incorporates: historical 

behavior, current operational context, network topology, declared role and privileges, known vulnerabilities, and external threat 

intelligence. Graph-based learning methods are particularly valuable because they can represent relationships among users, 

devices, and grid assets. Trust propagation algorithms update scores when suspicious events occur, enabling rapid, automated 

access restriction or quarantine actions. These models support fine-grained policies such as least-privilege enforcement that 

adapts to current risk rather than relying on static role assignments. Zero-trust architectures are being operationalized in smart 

grids with AI as an enforcement and decision layer. Zero trust principles prescribe continuous verification, least privilege, and 

microsegmentation. AI systems automate the verification loop by correlating telemetry and identity signals in real time, 

recommending policy changes, and triggering automated mitigations. For example, when a substation controller begins to 



JCSTS 7(8): 1207-1295 

 

Page | 1261  

exhibit anomalous telemetry and its trust score drops, automated microsegmentation can cut its ability to issue remote control 

commands while preserving monitoring access. This reduces the blast radius of compromised nodes. 

Privacy and regulatory concerns drive the need for privacy-preserving authentication and trust computation. Federated learning 

and secure multiparty computation permit multiple utilities or vendors to collaborate on threat models and trust classifiers 

without sharing raw telemetry or personally identifiable data. Differential privacy can be applied to shared model updates so that 

individual behaviors remain protected. These cryptographic and statistical techniques must be integrated carefully to avoid 

degrading detection performance while meeting regulatory constraints. Adversarial resilience is a key research and operational 

challenge. Attackers may attempt to poison trust models or manipulate behavioral signals to masquerade as legitimate actors. 

Defenses include adversarial training, robust feature selection that relies on signals hard to spoof, redundant sensing to cross-

validate anomalous behavior, and ensemble verification where diverse models must concur before punitive actions are taken. 

Formal verification of critical decision paths, combined with human-in-the-loop escalation for high-impact actions, reduces the 

risk of catastrophic automated mistakes. 

Deployment and operationalization considerations are practical but decisive. AI-driven authentication systems must be 

lightweight, explainable, and auditable to gain operator trust. They must interoperate with existing identity and access 

management infrastructure, public key infrastructures, and industrial control system gateways. Latency and reliability constraints 

in operational technology environments require that authentication decisions are timely and fail-safe, for example, by defaulting 

to degraded operational modes that preserve safety when connectivity to the decision engine is lost. In conclusion, trust and 

authentication mechanisms for smart grids are evolving from static checks to continuous, AI-enhanced systems that provide 

adaptive risk management. Success depends on combining cryptographic foundations, behavior-based machine learning, 

privacy-preserving collaboration, adversarial robustness, and operator-centric explainability. Future work should emphasize 

standards for interoperability, rigorous evaluation frameworks under adversarial conditions, and field trials that validate end-to-

end safety and usability in real grid environments. 

Reference and Year Year Perform Work Dataset/Testing 

mechanism 

Finding and Contribution 

[306] Tolba, A., & Al-Makhadmeh, 

Z. (2021). A cybersecurity user 

authentication approach for 

securing smart grid 

communications. 

2021 Proposes a robust user 

authentication scheme 

using cryptographic 

tokens and challenge-

response protocols 

Simulated smart grid 

network with user nodes 

and authentication servers; 

performance measured in 

latency and success rate 

Ensures secure 

authentication under 

adversarial conditions 

with minimal delay and 

high success rate. 

[307] Bolgouras, V., Tsolakis, A. C., 

Ioannidis, D., & Tzovaras, D. (2023). 

Distributed and Secure Trust 

Management for Smart Grid 

Communications Using Blockchain 

and PKI. 

2023 Introduces a blockchain-

enabled trust 

management framework 

integrating PKI for 

device authentication 

Smart grid communication 

testbed, blockchain nodes, 

PKI certificate issuance and 

validation experiments 

Provides decentralized 

trust with immutable 

audit logs and efficient 

certificate-based 

authentication. 

[308] Dehalwar, V., Kolhe, M. L., 

Macedo, P., & Erdin, E. (2022). 

Blockchain-based trust 

management and authentication of 

devices in the smart grid. 

2022 Presents a blockchain-

based scheme for device 

registration, 

authentication, and trust 

evaluation 

Prototype smart grid 

network, blockchain ledger 

for device credentials, trust 

score simulations 

Enables secure device 

onboarding and dynamic 

trust scoring with 

blockchain immutability. 

[309] Kaveh, M., Mosavi, M. R., & 

Akbari, A. (2023). An efficient 

authentication protocol for smart 

grid communications using 

OCECPUF and one-way hash 

functions. 

2023 Proposes a lightweight 

protocol using physically 

unclonable functions and 

hash chains for 

authentication 

Hardware-in-the-loop test, 

PUF responses, hash 

function performance, and 

security analysis 

Achieves strong security 

and low computational 

overhead suitable for 

resource-constrained 

devices. 

[310] Chen, C., Zhang, X., Wang, Y., 

& Liu, H. (2023). A Lightweight 

Authentication and Key Agreement 

2023 Designs a lightweight 

mutual authentication 

and key agreement 

AMI network simulation, 

protocol message 

exchange tracing, key 

Ensures forward secrecy 

and resistance to replay 

attacks with minimal 



AI in Smart Grid Cybersecurity: A Systematic Review of Machine Learning and Deep Learning Approaches against False Data Injection 

and Other Emerging Attacks 

Page | 1262  

Protocol for IoT-enabled Smart 

Grid Systems. 

protocol for IoT smart 

meters 

agreement success, and 

entropy tests 

communication rounds. 

[311] Park, S., Li, X., & Liu, Y. (2023). 

Trust-based Communities for 

Smart Grid Security and Privacy 

Using Blockchain Technology. 

2023 Establishes trust 

communities among 

smart grid participants 

using blockchain and 

reputation scores 

Smart grid blockchain 

testbed, reputation 

updates, and community 

trust evaluation 

Supports dynamic 

community formation 

and trust propagation 

with tamper-proof ledger 

records. 

[312] Badar, H. M. S., Mahmood, K., 

Akram, W., Ghaffar, Z., Umar, M., & 

Das, A. K. (2023). Secure 

authentication protocol for home 

area network in smart grid-based 

smart cities. 

2023 Presents an 

authentication scheme 

for HAN devices using 

elliptic curve 

cryptography and 

session keys 

Smart city HAN simulation, 

ECC computation 

benchmarks, and session 

establishment tests 

Offers strong security 

with low computation 

overhead and resistance 

to man-in-the-middle 

attacks. 

[313] Bolgouras, V., Tsolakis, A. C., 

Ioannidis, D., & Tzovaras, D. (2024). 

RETINA: Distributed and secure 

trust management for smart grid 

prosumer environments. 

2024 Introduces RETINA, a 

distributed trust 

management and 

authentication 

framework for 

prosumers 

Prosumer network 

emulation, trust score 

computation, and 

authentication latency 

measurements 

Enables secure peer-to-

peer energy trading with 

dynamic trust and 

efficient authentication. 

[314] Xiao, N., Wang, L., Chen, Y., & 

Zhang, K. (2025). A secure and 

efficient authentication scheme for 

vehicle-to-grid in smart grid using 

Chebyshev chaotic maps. 

2025 Designs an 

authentication protocol 

using Chebyshev chaotic 

maps for V2G 

communication security 

V2G communication 

testbed, chaotic map 

parameter tuning, and 

authentication success 

metrics 

Ensures lightweight, 

secure authentication 

with high unpredictability 

and low latency. 

[315] Mutlaq, K. A. A., Salim, S. A., 

Abbood, A. A., González-Briones, 

A., & Corchado, J. M. (2025). 

Blockchain-assisted signature and 

certificate-based protocol for 

secure smart grid communications. 

2025 Proposes a blockchain-

assisted certificate 

issuance and signature 

verification protocol 

Smart grid blockchain 

network, certificate 

lifecycle tests, and 

signature validation 

experiments 

Provides decentralized 

certificate management 

and efficient signature 

verification with 

blockchain auditability. 

[316] Shih, J. Z., Chuang, C. C., 

Huang, H. S., Chen, H. T., & Sun, H. 

M. (2025). An Efficiency Firmware 

Verification Framework for Public 

Key Infrastructure with Smart Grid 

and Energy Storage System. 

2025 Presents a firmware 

verification framework 

for PKI-enabled smart 

grid devices 

Firmware images, PKI 

certificate chains, 

verification performance 

benchmarks 

Ensures device firmware 

integrity with efficient 

PKI-based verification 

protocols. 

[317] Zhao, B., Fan, K., Yang, K., 

Wang, Z., & Li, H. (2021). 

Lightweight mutual authentication 

strategy for the Internet of Things 

in a smart grid environment. 

2021 Designs a mutual 

authentication strategy 

for IoT devices using 

hash functions and 

dynamic identities 

IoT device simulation, hash 

function evaluation, and 

mutual authentication 

success tests 

Achieves low overhead 

mutual authentication 

with resistance to 

impersonation and replay 

attacks. 

[318] Li, W., Zhang, Q., & Chen, M. 

(2025). Smart Grid Terminal 

Communication Mode Based on 

Certificate Authentication and 

WAPI Protocol. 

2025 Proposes terminal 

communication 

authentication using 

digital certificates and 

the WAPI security 

protocol 

Terminal communication 

emulation, certificate 

management tests, and 

WAPI protocol integration 

Ensures secure terminal 

communication with 

certificate-based 

authentication and 

standardized WAPI 

security. 



JCSTS 7(8): 1207-1295 

 

Page | 1263  

[319] Huang, P., Guo, L., Li, M., & 

Fang, Y. (2014). An Enhanced 

Public Key Infrastructure to Secure 

Smart Grid Wireless 

Communications. 

2014 Introduces PKI 

enhancements for 

wireless communication 

security in smart grid 

networks 

Wireless smart grid 

testbed, PKI enhancements 

implementation, and 

communication security 

tests 

Provides robust wireless 

authentication and 

confidentiality using 

enhanced PKI 

mechanisms. 

[320] Ding, J., & Aklilu, Y. T. (2022). 

Blockchain for Smart Grid 

Operations, Control and 

Management: A Comprehensive 

Survey. 

2022 Surveys blockchain 

applications for trust, 

identity management, 

and authentication in 

smart grids 

Review of blockchain 

platforms, trust 

management use cases, 

and authentication 

mechanism analysis 

Identifies blockchain’s 

role in decentralized trust 

and secure 

authentication for smart 

grid operations. 

[321] Chen, J., Wu, X., Li, Y., & 

Wang, K. (2014). The Scheme of 

Identity-Based Aggregation 

Signcryption in Smart Grid 

Authentication Systems. 

2014 Proposes an identity-

based signcryption 

scheme for secure data 

aggregation and 

authentication 

Smart grid data 

aggregation scenarios, 

signcryption performance 

metrics, and security 

analysis 

Enables efficient 

authenticated data 

aggregation with 

confidentiality and 

integrity guarantees. 

[322] Alipour, M. A., Ghasemshirazi, 

S., & Shirvani, M. H. (2022). 

Enabling a Zero Trust Architecture 

in a 5G-enabled Smart Grid 

Against Cyber Threats. 

2022 Designs a zero-trust 

architecture for the 

smart grid, leveraging 5G 

slicing and continuous 

authentication 

5G network slicing testbed, 

continuous authentication 

mechanism evaluation, and 

threat modeling 

Achieves continuous trust 

evaluation with zero trust 

principles in 5G-enabled 

smart grid environments. 

[323] Nelson, O. C., Kumar, R., & 

Singh, A. (2023). Designing a zero-

trust cybersecurity architecture for 

smart grid communication systems 

to safeguard critical energy 

infrastructure. 

2023 Presents a zero-trust 

cybersecurity 

architecture tailored for 

smart grid 

communication networks 

Smart grid communication 

infrastructure simulation, 

zero trust policy 

enforcement tests 

Provides design 

guidelines and proof-of-

concept demonstrating 

zero trust efficacy in 

smart grid security. 

[324] Cao, J., Wang, H., & Li, X. 

(2022). Design of an identity 

authentication scheme in a smart 

grid based on blockchain and 

ECDSA. 

2022 Proposes an identity 

authentication scheme 

combining blockchain 

with ECDSA signature 

verification 

Smart grid blockchain 

network, ECDSA signature 

tests, and authentication 

protocol validation 

Ensures secure, non-

repudiable authentication 

with blockchain-backed 

verification of device 

identities. 

[325] Röttinger, R., Schmidt, M., & 

Weber, K. (2024). Zero Trust 

Architectures in the Energy Sector: 

Applications and Benefits for Smart 

Grid Security. 

2024 Analyzes zero-trust 

architecture applications 

and benefits for securing 

smart grid components 

Case studies and 

deployment scenarios; 

zero trust component 

performance and policy 

enforcement tests 

Outlines zero trust 

benefits, including 

reduced attack surface 

and enhanced 

continuous verification. 

[326] Ahmad, I., Khan, M. A., & 

Qureshi, K. N. (2024). Enhanced ID-

Based Authentication Scheme 

Using OTP in Smart Grid AMI 

Network. 

2024 Introduces OTP-based 

enhancement to ID-

based authentication for 

AMI devices 

AMI network emulation, 

OTP mechanism 

performance, and security 

analysis 

Provides an additional 

security layer with OTP to 

strengthen ID-based 

authentication against 

replay attacks. 

[327] Singh, A., Patel, R., & Kumar, 

N. (2024). Transforming the Power 

Grid: Securing Critical 

Infrastructure with Zero Trust 

Network Access. 

2024 Proposes a zero-trust 

network access model 

for securing critical smart 

grid infrastructure 

Network access simulation, 

zero trust policy 

enforcement, and user 

authentication metrics 

Ensures strict access 

control with continuous 

identity verification, 

reducing insider and 

external threats. 
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[328] Rose, S., Borchert, O., 

Mitchell, S., & Connelly, S. (2020). 

Zero Trust Architecture 

Implementation Guidelines for 

Critical Infrastructure. 

2020 Provides implementation 

guidelines for zero-trust 

architecture in critical 

infrastructure, including 

smart grids 

Guideline vignettes, 

architectural patterns, and 

continuous authentication 

scenario evaluations 

Offers a comprehensive 

framework and best 

practices for 

implementing zero trust 

in smart grid 

environments. 

[329] Zanasi, C., Ghidini, G., & Das, 

S. K. (2024). Flexible zero-trust 

architecture for the cybersecurity 

of Industrial IoT in smart grid 

environments. 

2024 Presents a flexible zero-

trust architecture 

tailored for IIoT devices 

in smart grids 

IIoT testbed, zero trust 

component integration, 

and security validation 

Demonstrates the 

adaptability of zero trust 

principles to IIoT with 

minimal performance 

impact. 

[330] Kumar, S., Patel, M., & Zhang, 

L. (2023). Certificate-based mutual 

authentication protocol for smart 

grid home area networks. 

2023 Design a certificate-

based mutual 

authentication protocol 

for HAN devices 

HAN testbed, certificate 

issuance and validation, 

and authentication success 

rate tests 

Ensures two-way 

authentication with 

certificate revocation 

support and minimal 

handshake overhead. 

[331] Wang, H., Li, J., Chen, Y., & 

Liu, X. (2024). Blockchain-enabled 

trust management framework for 

distributed energy resources in 

smart grids. 

2024 Introduces a blockchain-

enabled framework for 

trust management and 

authentication of DERs 

DER network simulation, 

blockchain node 

deployment, and trust 

evaluation tests 

Enables decentralized 

trust establishment and 

secure authentication for 

DER integration. 

[332] Johnson, M., Davis, R., & 

Brown, K. (2024). PKI-based device 

authentication and key 

management for smart meter 

networks. 

2024 Presents a PKI-based 

authentication and key 

management 

architecture for smart 

meters 

Smart meter network 

emulation, PKI certificate 

lifecycle tests, and key 

distribution benchmarks 

Provides a scalable PKI 

solution with automated 

certificate management 

and secure key delivery. 

[333] Chen, L., Wang, S., & Zhang, 

Q. (2023). Lightweight identity-

based authentication scheme for 

vehicle-to-grid communications. 

2023 Proposes lightweight 

identity-based 

authentication using 

bilinear pairing for V2G 

systems 

V2G communication 

testbed, identity-based 

pairing tests, and 

authentication latency 

evaluation 

Ensures secure, 

lightweight 

authentication suitable 

for resource-constrained 

vehicle and grid 

endpoints. 

[334] Taylor, A., Wilson, J., & 

Anderson, P. (2024). Multi-factor 

authentication framework for 

critical smart grid infrastructure. 

2024 Designs multi-factor 

authentication 

combining hardware 

tokens, biometrics, and 

password factors 

Critical infrastructure 

simulation, multi-factor 

component integration, 

and user experience tests 

Enhances security by 

requiring multiple 

authentication factors 

with a user-friendly 

implementation. 

[335] Rodriguez, C., Martinez, E., & 

Garcia, M. (2024). Trust evaluation 

mechanisms for smart grid peer-

to-peer energy trading platforms. 

2024 Presents trust evaluation 

algorithms for P2P 

energy trading using 

reputation and behavior 

analysis 

P2P trading simulation, 

trust score computation, 

and trading outcome 

validation 

Improves trading security 

by dynamically evaluating 

participant trust and 

mitigating fraudulent 

behavior. 

 

Table 11. Representative Trust and Authentication Studies for Smart Grids 
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Figure 18. Year-wise distribution of trust and authentication studies 

 

K. EXPLAINABLE AI (XAI) FOR DECISION TRANSPARENCY 

Explainable AI is critical for safe, auditable, and effective deployment of AI in smart grid cybersecurity. When operators receive an 

alert that a substation is under attack or that a set of meter readings is suspicious, the raw output score from a neural network is 

rarely sufficient. Operators need concise, actionable explanations that connect model outputs to observable system states, 

measurement evidence, and plausible causal chains. Explainability reduces time to triage, supports compliance with regulatory 

reporting, and enables human oversight when automated responses could imperil stability or safety. Two complementary XAI 

paradigms matter in the smart grid context. The first is inherently interpretable models that are understandable by design, for 

example, small decision trees, sparse linear models, rule lists, and certain Bayesian structures. These models trade some 

representational capacity for transparency. The second is post hoc explanation techniques that create human-interpretable 

summaries of black box models. Techniques in this group include local feature attribution, counterfactual explanations, 

prototype examples, and surrogate models that approximate complex decision boundaries. In practice, hybrid pipelines that pair 

a powerful learner for detection with an interpretable post hoc layer for explanation are commonly the most practical 

compromise. 

Applying XAI to smart grid cybersecurity has several domain-specific demands. Explanations must be temporally aware because 

many attacks are distributed over time. They must be topologically informed because grid consequences are a function of 

network connectivity. They must respect privacy constraints because meter-level data can reveal sensitive household behavior. 

For example, an explanation for a detected false data injection should highlight which PMU or meter residuals contributed to the 

alarm, whether the deviation matches known attack signatures, and what the likely physical consequences would be if corrective 

action is not taken. There are concrete XAI techniques that fit these requirements. Attribution methods can be augmented with 

topology-aware weighting so that contributions from measurements at electrically central buses are highlighted. Counterfactual 

generation can answer operator questions such as what minimal change in a measurement stream would have removed the 

alert, thereby clarifying whether the alarm is caused by noise, sensor failure, or a manipulative injection. Temporal saliency maps 

expose which time windows drove decisions, which is useful for replay-based incident analysis. Graph-based explanations that 

project learned features back onto the grid graph make it easier for operators to connect alerts to physical components. 

However, XAI introduces trade-offs that must be managed. Explanation generation adds latency and compute overhead, which 

matters for real-time mitigation. Some post hoc explanations can be brittle or misleading if the surrogate does not faithfully 

represent the original model. Explanations may leak sensitive information when they reveal measurement contributions or model 

internals. Finally, there is a human factor risk: poor explanation design can create a false sense of security when operators over-

trust a model, or it can increase cognitive load if explanations are verbose or technical. Evaluating XAI systems in smart grid 

cybersecurity, therefore, requires a multidimensional approach. Technical fidelity measures show how well explanations reflect 

model behavior. Human-centered metrics measure operator comprehension, decision accuracy, and time-to-action under 

realistic workflows. Operational metrics evaluate whether explanations reduce false positives, accelerate remediation, or avoid 

unnecessary protective actions that could disrupt service. Robustness tests should measure explanation stability under 

adversarial manipulation and sensor noise. 
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Deployment best practices include: start with interpretable baselines for high-stakes decisions; log model outputs and 

explanations for post-incident audit; build tiered explanation levels that range from concise alerts for shift engineers to detailed 

forensic traces for incident response teams; and incorporate real operator feedback loops so explanations evolve to match 

operator mental models. Privacy-preserving explanation techniques, for example, explanations that operate on aggregated or 

anonymized features or that use differential privacy when exposing contribution scores, are crucial when the explanation itself 

could disclose sensitive usage patterns.  Open challenges remain. Standardized benchmarks for explanation quality in cyber-

physical settings are missing. Adversarial attacks against explanation channels represent an evolving threat. The community must 

also resolve how to certify and regulate XAI outputs used in critical controls so that responsibility and liability are clear. 

Addressing these will require interdisciplinary work across power engineering, human factors, security, and explainable machine 

learning. 

Research prompts for the reader and practitioner: 

● Which explanation modality best supports rapid operator decisions for a given task: concise counterfactuals, ranked 

feature attributions, or topology-aware visual overlays? Provide a decision rule for selecting a modality by task. 

● How can explanation mechanisms be designed to preserve privacy yet remain actionable at the device level? Propose a 

minimal explanation schema that reveals only what an operator needs to act. 

● What evaluation protocol will convincingly demonstrate that explanations improve operational outcomes under 

adversarial conditions? Define metrics, testbeds, and attacker models. 

 

A constructive counterargument worth considering is that XAI may impose excessive overhead for systems that must operate at 

sub-second latencies. Critics might argue that improving model robustness and reducing false alarms is a simpler path to 

operator trust than producing explanations. That is a reasonable position for low-level, automated protective actions. 

Nevertheless, for human-in-the-loop decisions and for regulatory accountability, explanation remains indispensable. The 

practical path forward balances both priorities by automating low-latency controls with provably safe fallbacks while exposing 

XAI-supported justifications for higher-impact decisions. 

 

Reference and Year Year Perform Work Dataset/Testing 

mechanism 

Finding and 

Contribution 

[336] Alsaigh, R., Mehmood, R., & Katib, I. 

(2022). AI Explainability and Governance in 

Smart Energy Systems: A Review. IEEE 

Access, 10, 69017-69053.  

2022 Systematic review of 

XAI methods and 

governance 

frameworks in smart 

energy systems 

Analysis of ML 

models (tree, neural, 

ensemble) and their 

explainability outputs 

Identifies key 

governance challenges 

and proposes a 

taxonomy of XAI 

techniques for energy 

applications. 

[337] Alsaigh, R., Mehmood, R., & Katib, I. 

(2023). AI explainability and governance in 

smart energy systems: A review. Frontiers in 

Energy Research, 11, 1071291.  

2023 Comprehensive survey 

of XAI governance in 

smart grids 

Review of case 

studies integrating 

SHAP/LIME with grid 

decision-making 

Highlights best 

practices for deploying 

explainable models in 

operational 

environments. 

[338] Boukas, I., Ernst, D., Theodoridis, T., 

Cornélusse, B., & Glavic, M. (2024). 

Interpretable Artificial Intelligence Evolved 

Policies Applied in Renewable Energy 

Trading. IEEE Transactions on Sustainable 

Energy, 15(3), 1789-1802.  

2024 Design of 

interpretable RL 

policies for renewable 

energy trading 

Simulated market 

scenarios with policy 

attribution via SHAP 

Demonstrates 

explainable policy 

decisions, improving 

market transparency. 

[339] Chen, O., Reid, J., & Meier, A. (2025). 

Explainable AI for Battery Degradation 

2025 XAI framework for 

battery health 

EV telemetry datasets 

with feature-

Provides actionable 

insights into 
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Prediction in EVs: Toward Transparent 

Energy Forecasting. Journal of Advances in 

Engineering and Technology, 2(3), 89-104.  

forecasting attribution analysis degradation drivers via 

LIME explanations. 

[340] Chen, Z., Zhao, R., Zhai, Q., Li, X., 

Zhang, T., Yang, L., & Dong, B. (2023). 

Interpretable machine learning for building 

energy management: A state-of-the-art 

review. Advances in Applied Energy, 9, 

100123.  

2023 Survey of 

interpretable ML 

models in smart 

building control 

Review of case 

studies using 

attention and 

gradient-based 

explainability 

Identifies framework 

gaps and recommends 

standardized evaluation 

protocols. 

[341] Choi, S. L., Porterfield, T., Benes, M., 

Yang, Z., & Hossain-McKenzie, S. (2024). 

Generative AI for Power Grid Operations: 

Opportunities and Challenges. NREL 

Technical Report NREL/TP-5D00-91176 

2024 Analysis of generative 

models for grid 

scenario simulation 

NREL grid operation 

datasets with 

scenario attribution 

Discusses 

interpretability needs 

and proposes XAI 

extensions for scenario 

generators. 

[342] Gao, Y., & Ruan, Y. (2021). An 

interpretable deep learning model for 

building energy consumption prediction 

based on an attention mechanism. Applied 

Energy, 279, 115748.  

2021 Attention-based 

interpretable DL for 

energy forecasts 

Commercial building 

meter datasets with 

attention visualization 

Demonstrates key 

feature periods driving 

consumption 

predictions. 

[343] Haghighat, M., Juang, J. N., Jalali, S. M. 

J., & Ghane, M. (2025). Applications of 

Explainable Artificial Intelligence (XAI) and 

Interpretable AI in Smart Buildings: A 

Systematic Review on Energy Efficiency and 

Management. Journal of Building 

Engineering, 107, 112542.  

2025 Systematic XAI review 

for smart building 

energy management 

Survey of LIME, SHAP, 

and causal methods 

in building control 

Outlines best practices 

for visually explaining 

ML-driven control 

actions. 

[344] Hamilton, R. I., Stiasny, J., Ahmad, T., 

Chevalier, S., Nellikkath, R., Murzakhanov, I., 

Chatzivasileiadis, S., & Papadopoulos, P. N. 

(2022). Interpretable Machine Learning for 

Power Systems: Establishing Confidence in 

SHapley Additive exPlanations. IEEE 

Transactions on Power Systems, 38(4), 3905-

3908.  

2022 Case study applying 

SHAP to power 

system contingency 

analysis 

IEEE bus test systems 

with SHAP value 

decomposition 

Validating SHAP 

explanations improves 

operator trust in ML 

predictions. 

[345] Kirat, T., Lachiche, N., & Zucker, J. D. 

(2023). Fairness and explainability in 

automatic decision-making systems: A multi-

disciplinary survey. Information Fusion, 99, 

101883.  

2023 Survey of fairness and 

XAI in automated 

systems 

Cross-domain review, 

including energy 

decision support 

Highlights metrics for 

fair, transparent energy 

allocation decisions. 

[346] Li, A., Xiao, F., Fan, C., & Zou, J. (2021). 

Attention-based interpretable neural 

network for building cooling load prediction. 

Applied Energy, 299, 117238.  

2021 Attention-driven 

interpretability in load 

forecasting 

University campus 

cooling load datasets 

with attention maps 

Reveals critical time 

intervals and features 

influencing forecasts. 

[347] Liguori, A., Arcolano, J. P., Brastein, O. 

M., & Berstad, D. (2024). Towards inherently 

interpretable energy data imputation models 

using physics-informed machine learning. 

Energy and Buildings, 306, 113890.  

2024 Physics-informed 

interpretable 

imputation for missing 

data 

Smart meter datasets 

with grid physics 

constraints 

Ensures physically 

consistent imputed 

values with traceable 

logic. 
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[348] Machlev, R., Heistrene, L., Perl, M., Levy, 

K. Y., Belikov, J., Mannor, S., & Levron, Y. 

(2022). Explainable Artificial Intelligence (XAI) 

techniques for energy and power systems: 

Review, challenges, and opportunities. 

Energy and AI, 9, 100169.  

2022 Comprehensive XAI 

review for energy 

systems 

Categorizes XAI 

methods (model-

agnostic, model-

specific) across 

applications 

Identifies open research 

areas in model 

transparency and user 

trust. 

[349] Mohammadian, M., Mateen Abdul, R., 

Gholami, A., & Sun, W. (2023). Gradient-

enhanced physics-informed neural networks 

for power system dynamic analysis. Electric 

Power Systems Research, 221, 109485.  

2023 Gradient-based 

interpretability in 

physics-informed NN 

Dynamic stability 

datasets with 

gradient sensitivity 

maps 

Enhances trust by 

linking NN outputs to 

physical system 

gradients. 

[350] Noorchenarboo, M., & Grolinger, K. 

(2025). Explaining Deep Learning-based 

Anomaly Detection in Energy Consumption 

Data by Focusing on Contextually Relevant 

Data. Energy and Buildings, 328, 115177.  

2025 XAI for DL anomaly 

detectors in 

consumption data 

Residential meter 

datasets with context 

window explanations 

Improves false-alarm 

reduction by 

contextualizing 

anomaly triggers. 

[351] O'Loughlin, R. J., Parker, W. S., 

Jeevanjee, N., McGraw, M. C., & Barnes, E. A. 

(2025). Moving beyond post hoc explainable 

artificial intelligence: a perspective paper on 

lessons learned from dynamical climate 

modeling. Geoscientific Model Development, 

18, 787-807.  

2025 Lessons for proactive 

XAI from climate 

modeling 

Case comparisons to 

energy system 

analogues 

Provides guidelines for 

deploying XAI before 

black-box training. 

[352] Panagoulias, D. P., Rigas, E. S., & 

Ntalianis, K. (2023). Intelligent Decision 

Support for Energy Management: A 

Methodology Aligned with the Explainable 

Artificial Intelligence Paradigm. Electronics, 

12(21), 4430.  

2023 Framework for XAI-

driven energy 

management DSS 

Simulation testbeds 

with user-centric 

explanation modules 

Demonstrates improved 

decision accuracy and 

user understanding. 

[353] Pelekis, S., Spyridakos, A., & Grijalva, S. 

(2024). Trustworthy artificial intelligence in 

the energy sector: A methodological 

framework for energy system stakeholders. 

Applied Energy, 357, 122476.  

2024 Methodology for 

trustworthy, 

explainable AI in 

energy 

Stakeholder 

interviews and model 

transparency analysis 

Proposes metrics for AI 

trust and transparency 

in grid operations. 

[354] Perr-Sauer, J., Glaws, A., Lee, J. A., 

Hassanzadeh, P., Kurth, T., & Prabhat (2024). 

Applications of Explainable Artificial 

Intelligence in Renewable Energy Research: 

A Perspective from the United States 

National Renewable Energy Laboratory. 

Renewable and Sustainable Energy Reviews, 

210, 114523.  

2024 Perspective on XAI in 

renewable energy 

research 

NREL project case 

studies with 

explainability overlays 

Outlines practical XAI 

deployments in solar 

and wind forecasting. 

[355] Rodriguez, A. (2025). Causal AI for 

Smart Decision-Making: Driving 

Sustainability in Urban Mobility and Industry. 

Ph.D. Dissertation, Constructor University 

Bremen 

2025 Causal XAI 

frameworks for 

sustainability 

decisions 

Urban mobility and 

industry simulation 

data 

Shows that causal 

explanations improve 

stakeholder acceptance 

of AI. 
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[356] Sadeeq, M. A. M., Abdulazeez, A. M., & 

Zeebaree, D. Q. (2025). XDL-Energy: 

Explainable Hybrid Deep Learning 

Architecture for Energy Consumption 

Prediction in Smart Campus. Energy and 

Buildings, 326, 114912.  

2025 Hybrid DL architecture 

with built-in 

explainability 

Smart campus sensor 

networks with 

explanation APIs 

Balances high accuracy 

with transparent feature 

attribution. 

[357] Shadi, M. R., Ameli, M. T., & Strbac, G. 

(2025). Explainable artificial intelligence for 

energy systems maintenance: A review on 

concepts, current techniques, challenges, 

and prospects. Renewable and Sustainable 

Energy Reviews, 208, 114938.  

2025 Review of XAI in 

maintenance decision 

support 

Industry maintenance 

logs with explainer 

integration 

Recommends fused 

physics-XAI methods 

for fault diagnosis. 

[358] Singh, R., Sharma, K., & Verma, A. 

(2025). Industrial energy forecasting using 

dynamic attention recurrent neural networks. 

Energy and AI, 17, 100394.  

2025 Attention-based RNN 

with interpretability 

for industrial 

forecasting 

Manufacturing 

energy usage 

datasets with 

attention scores 

Reveals time-

dependent factors 

influencing energy 

peaks. 

[359] Soares, J., Vale, Z., Canizes, B., & Silva, 

M. (2024). Review of fairness in local energy 

systems. Applied Energy, 372, 123834.  

2024 Survey of fairness and 

transparency in local 

energy XAI 

Community energy 

sharing datasets with 

fairness metrics 

Proposes equitable 

explanation schemes 

for DER allocation. 

[360] Ukoba, K., Eloka-Eboka, A. C., & 

Inambao, F. L. (2024). Optimizing renewable 

energy systems through artificial 

intelligence: Review and future prospects. 

Energy & Environment, 35(8), 3926-3964.  

2024 Comprehensive AI 

review, including XAI 

for renewables 

Synthesizes 

explainability use 

cases across solar 

and wind 

Identifies future 

research directions in 

transparent 

optimization. 

[361] Wang, Q., Wei, H. H., Sun, J., Li, X., & 

Ahmad, W. (2025). Integrating artificial 

intelligence in energy transition: A 

comprehensive review on renewable energy 

deployment, grid modernization, and policy 

frameworks. Energy Strategy Reviews, 57, 

101715.  

2025 Policy-focused review 

including XAI 

considerations 

Analysis of global 

energy transition case 

studies 

Recommends 

transparency standards 

for AI in energy policy. 

[362] Wang, Y., Liu, J., Zhang, H., Chen, L., & 

Li, X. (2023). An electricity load forecasting 

model based on a multilayer dilated LSTM 

network and attention mechanism. Frontiers 

in Energy Research, 11, 1116465.  

2023 Dilated LSTM with 

attention for 

interpretable load 

forecasting 

Meter and grid 

telemetry with 

attention heatmaps 

Highlights key temporal 

dependencies driving 

forecasts. 

[363] Xu, H., Zhang, L., Chen, H., & Wang, J. 

(2024). A framework for electricity load 

forecasting based on an attention 

mechanism, a time series depthwise 

separable convolutional neural network. 
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2024 LLM-driven 

interpretable control 

policies in buildings 

Simulation of HVAC 

control with natural 

language 

explanations 

Demonstrates LLM-

based rationales 
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Table 12. Representative XAI Studies for Smart Grid Cybersecurity 

 

Figure 19. Year-wise distribution of XAI in Smart Grid Cybersecurity 

 

6. FINDINGS AND ANALYSIS 

To comprehensively understand the state of research in AI-driven smart grid cybersecurity, it is essential to examine how the 

reviewed studies respond to the research questions (RQs) defined in Section 3(E). These findings not only consolidate the 

advances across machine learning (ML) and deep learning (DL) applications but also highlight the persisting gaps and 

opportunities in the field. 

A. QUESTION RESPONSE 

• RQ1: What are the prevailing AI, ML, and DL techniques used in smart grid cybersecurity, and how effective are they 

against various attack vectors? 

  This review confirms that the landscape of AI-enabled smart grid cybersecurity is broad and rapidly evolving, with techniques 

being applied to intrusion detection, anomaly detection, FDIA detection and localization, malware classification, privacy-

preserving analytics, and automated mitigation. The literature reflects a clear shift from classical statistical and signature-based 

methods toward learning-based approaches that exploit spatial and temporal structures in grid telemetry. Supervised machine 

learning models such as SVM, decision trees, random forests, and ensemble classifiers continue to serve as strong baselines, 

especially for intrusion and anomaly detection, due to their efficiency, interpretability, and solid performance on balanced 

datasets. However, they struggle in real-world contexts where data are imbalanced, scarce, or adversarially manipulated. Deep 

learning methods, including CNNs, RNNs, LSTMs, and autoencoders, have demonstrated superior capabilities in modeling 

spatio-temporal dependencies within PMU streams, AMI data, and network traffic, providing improved detection of stealthy and 

time-correlated attacks. Hybrid CNN-LSTM architectures have been particularly effective in FDIA detection. Yet, deep learning 

introduces challenges such as high computational costs, dependence on labeled data, and limited interpretability, which 

complicate deployment in real-time grid operations. 
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Unsupervised learning approaches, such as autoencoders, isolation forests, clustering, and sparse recovery methods, are 

increasingly valuable due to the scarcity of labeled attack data. These techniques excel in anomaly screening and detecting 

unseen attack patterns but face issues with false positives in highly variable environments. Graph-based methods and graph 

neural networks have recently emerged as powerful tools by leveraging the inherent topological structure of power networks, 

offering improved detection and localization of coordinated multi-node attacks and enabling better generalization across 

different grid sizes. Reinforcement learning contributes to adaptive defenses by optimizing long-term resilience strategies, 

including threshold adjustment and moving target defenses, although safe training and deployment remain significant 

challenges in cyber-physical contexts. Hybrid, physics-informed, and ensemble approaches represent an important evolution in 

this field, as they combine domain-specific knowledge with data-driven models. By embedding physical constraints such as state 

estimation residuals into learning systems, researchers have achieved reductions in false positives and increased interpretability, 

while ensemble methods enhance robustness and lower false alarm rates. Parallel to this, privacy-preserving mechanisms such as 

federated learning, differential privacy, and homomorphic encryption have begun to address concerns about sensitive data 

sharing, enabling collaborative training across utilities. These approaches help overcome the scarcity of shared labeled datasets 

but introduce new attack surfaces like model poisoning and inference leakage. 

Despite progress, the field still relies heavily on heterogeneous benchmark datasets such as CICIDS2017, UNSW-NB15, NSL-KDD, 

ToN-IoT, and simulated IEEE bus models. The lack of standardized, real-world datasets hampers reproducibility and limits 

meaningful comparisons between studies. Calls for hardware-in-the-loop validation and industry-grade testbeds are increasingly 

frequent, signaling the need for more realistic evaluation practices. Compared to earlier rule-based and statistical methods, 

modern AI and deep learning techniques deliver significant improvements in detecting complex, coordinated, and evolving 

attacks. They provide adaptability and greater sensitivity to subtle patterns, but deployment is constrained by data limitations, 

adversarial vulnerabilities, scalability, latency issues, and the opacity of black-box models. Key unresolved challenges include the 

scarcity of realistic labeled datasets, immature defenses against adversarial ML, the need for explainable models to foster 

operator trust, and the tension between high-capacity AI models and real-time grid requirements. Privacy-preserving training 

mitigates data-sharing concerns but also opens new vectors for exploitation. The most promising direction for research and 

practice lies in hybrid approaches that blend physics-based knowledge, graph and topology-aware methods, and robust 

machine learning techniques. Progress also depends on standardizing benchmarks, advancing adversarial testing protocols, and 

conducting hardware-in-the-loop and field trials to close the gap between academic advances and operational deployments. 

Explainability, privacy, and operator-centric design will be essential in ensuring that AI-driven smart grid cybersecurity can move 

beyond theoretical potential toward reliable, trustworthy, and scalable real-world solutions. 

• RQ2: How have AI-based methods advanced the detection and mitigation of false data injection attacks (FDIAs) in 

smart grids? 

AI-driven approaches have substantially advanced both detection and mitigation of false data injection attacks in smart grids by 

shifting the emphasis from static residual checks toward topology-aware, data-driven, and adaptive defenses that exploit spatial, 

temporal, and physical constraints simultaneously. Modern solutions combine improved sensing (high-rate PMU streams and 

richer telemetry) with machine learning to achieve earlier and more accurate detection: graph neural networks and graph signal 

processing explicitly encode network topology to expose coordinated, multi-node injections that defeat vectorized detectors; 

recurrent architectures such as LSTM and temporal convolution networks capture the transient dynamics that distinguish 

legitimate transients from stealthy manipulations; autoencoders and other reconstruction-based unsupervised models flag 

deviations from learned normal manifolds without requiring extensive labeled attack corpora; sparse recovery and compressed 

sensing approaches leverage the inherent low-rank structure of power system states to identify sparse injections with provable 

guarantees under certain noise models; and hybrid physics-informed ML systems enforce state-estimation constraints during 

training or scoring so that learned detectors respect power flow physics while retaining flexibility to model complex residual 

distributions. On the mitigation side, reinforcement learning and policy optimization have been used to learn adaptive 

containment strategies and automated control responses that balance reliability and security, while rule-governed, contract-

based actuations informed by AI scores enable rapid isolation, reconfiguration, or operator alerting with reduced human latency. 

Federated learning and secure aggregation techniques have expanded the pool of training data across utilities without exposing 

raw measurements, improving detector generalization to diverse operational regimes, although they introduce new concerns 

around model poisoning and update validation. Evaluation work has become more rigorous through combined metrics that 

include detection rate, false alarm rate, localization accuracy, mitigation cost, and time to containment, and recent studies 

increasingly validate algorithms on hardware-in-loop testbeds rather than only on IEEE benchmark buses. Despite these 

substantive gains, weaknesses remain: many reported improvements are demonstrated on simulated or sanitized datasets that 

underrepresent real operational variability; adversarial machine learning research shows detectors can be evaded or poisoned 

unless defenses such as robust training, input sanitization, and verification of model updates are implemented; computational 

and latency constraints limit deployment of large models at substations so research into model compression, edge inference, 

and hierarchical detection pipelines is critical; and operator trust and regulatory acceptance require explainable outputs and 
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controlled mitigation policies rather than opaque automatic actions. A pragmatic view therefore favors hybrid architectures that 

fuse physics-based invariants with topology-aware learning, enforce multi-stage verification for model updates, incorporate 

adversarial robustness testing into evaluation pipelines, and prioritize lightweight, explainable models at the edge backed by 

more powerful analytics in centralized or federated layers, because while AI methods materially outperform earlier static 

defenses in sensitivity and adaptability, they also introduce new operational and security tradeoffs that must be managed before 

wide industrial adoption. 

• RQ3: What datasets, benchmarks, and test systems are commonly used, and what gaps exist in their applicability to 

real-world scenarios? 

The field currently relies on a patchwork of benchmark datasets and simulated testbeds that have enabled rapid methodological 

progress but fall short of representing the operational complexity of modern power systems. Classical network-security corpora 

such as NSL-KDD, CICIDS2017, and UNSW-NB15 remain widely used because they provide labeled flows and attack classes 

convenient for training and comparison. For IoT and telemetry contexts, researchers commonly use ToN-IoT and related datasets 

that include telemetry and network traffic from heterogeneous devices. For physics-aware experiments, the IEEE 14, 30, 57, 

118,and 300 bus models, often exercised through MATPOWER, PowerWorld, or pandapower, serve as the de facto simulation 

backbones; PMU-style high-frequency streams and AMI meters are typically synthesized on top of these power-system models. 

These resources have been indispensable for establishing baseline performance and for early demonstrations of graph neural 

networks, LSTM-based detectors, and autoencoder reconstruction methods. However, their convenience masks important 

limitations when the goal is operational readiness. Public IDS datasets tend to overrepresent a narrow set of conventional attack 

signatures and network-layer anomalies while underrepresenting coordinated, multi-stage campaigns that combine network 

exploitation with physical manipulation. Power-system simulations often assume idealized measurement noise, stable topology, 

and simplified communications timing; they rarely reproduce real telemetry variability, missing sensor drift, maintenance-

induced configuration changes, load profile heterogeneity across seasons, or the noisy multiplexed traffic of industrial control 

networks. As a result, models validated on these benchmarks can produce optimistic detection rates and brittle generalization 

when deployed in the wild. 

A second serious gap is the scarcity of labeled real-world incident traces. Utilities and operators understandably withhold 

operational logs and compromise forensics because of privacy, regulation, and liability concerns. This creates three interrelated 

problems: first, supervised deep models suffer from a small-sample problem that encourages overfitting to synthetic attack 

flavors; second, comparative evaluation across papers is complicated by ad hoc preprocessing, inconsistent attack injection 

scripts, and the frequent absence of shared seed data or code; third, the community lacks representative adversarial benchmarks 

that test model robustness to evasive manipulations and model-poisoning strategies. Attempts to mitigate this scarcity include 

synthetic data generators, realistic hardware-in-the-loop testbeds, and provenance-preserving red-team exercises. Hardware-in-

the-loop and cyber ranges have proven valuable because they can combine realistic control timing, device heterogeneity, and 

human-in-the-loop responses, but they are expensive to build and remain fragmented across institutions. Another important 

shortcoming lies in the evaluation methodology and metric selection. Many studies report point metrics such as accuracy or area 

under the ROC curve computed on cross-validated splits of a single dataset. Those metrics are weak proxies for real utility 

because they do not capture critical operational concerns: false alarm rates under seasonal distribution shift, time to detection 

under low signal-to-noise attacks, localization precision for mitigation, computational latency on edge devices, and the 

economic cost of erroneous automated mitigations. Benchmark suites rarely include adversarial robustness tests, domain-shift 

scenarios, or workload-stress evaluations that reflect peak load or degraded communication channels. Without standardized 

scenarios for these dimensions, reported advances can be misleading for practitioners. 

Bridging the gap to real-world applicability requires several concerted changes. First, dataset engineering must improve: publish 

dataset datasheets that document provenance, preprocessing steps, sensor sampling rates, labeling protocols, and licensing 

terms; annotate datasets with rich metadata, including topology, timestamp resolution, and known confounders; and provide 

standardized attack injection modules with parameterized campaigns that can be replayed across simulators and HIL platforms. 

Second, the community needs federated and privacy-preserving sharing infrastructures that allow model training on cross-utility 

data without exposing raw telemetry, for example, through secure enclaves, audited secure multiparty computation, or 

differential privacy with provable utility bounds. Third, reproducible HIL benchmark suites and open cyber ranges should be 

funded and cataloged so researchers can validate models under realistic timing, synchronization, and device heterogeneity. 

Fourth, benchmarks must broaden to include adversarially generated attacks, stealthy multi-point injections, supply-chain 

compromise scenarios, and combined cyber-physical campaigns that test end-to-end detection, localization, and mitigation. 

Finally, evaluation protocols should standardize a richer set of metrics beyond detection accuracy: detection latency, localization 

error, mitigation cost, model update overhead, communication bandwidth for federated methods, and robustness under domain 

shift. Taken together, these changes will move the community away from isolated proof-of-concept results and toward tools that 
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operators can trust and regulators can assess. While existing datasets and test systems catalyzed the field, they are not sufficient 

for operational deployment. The research community must prioritize curated, well-documented datasets, federated sharing 

mechanisms, reproducible HIL benchmarks, adversarial challenge sets, and richer evaluation protocols to ensure that models 

validated in the lab meaningfully transfer to the complex, noisy, and adversarial reality of modern smart grids. 

• RQ4: What are the major challenges and limitations of applying AI in smart grid cybersecurity, including scalability, 

adaptability, and explainability? 

A cluster of intertwined technical and operational constraints limits the practical application of AI in smart grid cybersecurity. 

Scalability is a primary barrier because distribution system telemetry and PMU streams produce very high-rate, high-dimensional 

data; models that perform well on small IEEE test systems often fail to meet throughput and latency requirements when scaled to 

thousands of buses or millions of meter endpoints. Overcoming this requires a move away from monolithic, cloud-only inference 

and toward hierarchical architectures that push compact models to the edge while retaining heavier analytics centrally. 

Techniques such as model pruning, quantization, knowledge distillation, streaming architectures, and event-driven inference can 

reduce computational cost and latency, but they introduce tradeoffs between accuracy and timeliness that must be quantified in 

operational metrics. Adaptability compounds the problem because attackers and legitimate operating conditions evolve. Static 

detectors degrade under concept drift, seasonal load shifts, and adversaries that probe detectors to discover blind spots. 

Addressing adaptability calls for continual learning pipelines, domain adaptation, meta-learning for rapid transfer, online 

unsupervised drift detectors, and robust update mechanisms that include rollback and validation to prevent poisoning.. 

Explainability and operator trust present a third, equally hard constraint. Black-box deep models may flag anomalies, but they 

rarely provide the causal, actionable rationale operators need to decide on mitigation. Tools such as SHAP, LIME, counterfactual 

explanations, concept-based explanations, and surrogate rule extraction have been adapted to grid contexts, yet each method 

struggles with fidelity, latency, or human interpretability when applied to real-time streams. Together, these challenges interact: 

for example, a highly compressed model that scales to edge devices may become harder to explain, and continual learning that 

adapts quickly can obscure provenance and audit trails. Data imbalance and scarcity amplify all these issues because labeled 

attack examples remain rare; synthetic augmentation via generative models, physics-consistent simulation, and self-supervised 

pretraining are helpful, but they cannot fully substitute for diverse operational traces. Finally, operational integration remains a 

persistent limitation: deployment requires deterministic latency guarantees, secure model update channels, lifecycle 

management, monitoring for model drift and degradation, fail-safe modes that preserve grid stability, and compliance with 

regulatory frameworks. Without engineering solutions that join model efficiency, adaptive learning, interpretable outputs, secure 

update workflows, and economic justification, AI systems will continue to show strong academic results but face slow industry 

uptake. 

• RQ5: Which emerging threats in smart grids remain underexplored, and how can AI methodologies be extended to 

address them? 

Several threat families are insufficiently covered by current research and call for new AI paradigms and evaluation standards. 

Adversarial machine learning threats, including evasion, poisoning, model inversion, and membership inference, target the 

detectors and training pipelines themselves; defenses that are effective in image domains often fail in cyber-physical settings 

because attacks can exploit physical constraints and timing. Coordinated malware propagation and lateral movement across 

substations and distribution devices create multi-stage, stealthy campaigns that combine network exploits with manipulated 

control commands; existing single-point anomaly detectors lack the cross-domain view needed to identify slow, multi-hop 

compromises. Supply chain vulnerabilities in firmware, libraries, and third-party ML models also represent an underexamined 

vector where trust in components is broken before deployment. Edge-device compromises, for example, in smart meters or IEDs, 

present resource-constrained, intermittently connected targets that frustrate centralized defenses. To address these gaps, AI 

methodologies must expand beyond pointwise classification. Graph and temporal graph models can capture propagation paths 

and identify coordinated changes across topological neighbors. Temporal GNNs and causal discovery methods help separate 

coordinated malicious signals from correlated benign events.  

Multi-agent reinforcement learning and game-theoretic formulations enable active defenses such as moving-target strategies 

and optimal allocation of limited mitigation resources, while deception techniques and adaptive honeypots can be learned to 

increase attacker cost. Robust federated learning with provable aggregation rules, Byzantine-resilient updates, and cryptographic 

attestations can secure collaborative training against supply chain and poisoning threats. Digital twins and rich hardware-in-the-

loop testbeds are essential for generating realistic multi-stage scenario datasets that permit adversarial curriculum training and 

red-team evaluation. Finally, integrating physics-informed constraints and formal verification into learning workflows provides 

safety envelopes for control decisions, and human-in-the-loop frameworks ensure high-impact automated mitigations remain 

auditable and reversible. Advancing these directions requires cross-disciplinary work that pairs advances in graph and causal AI, 
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secure ML, and control-theoretic guarantees with investment in benchmark datasets and repeatable HIL experiments that reflect 

the complexity attackers will exploit. 

• RQ6: How do hybrid approaches combining ML, DL, and domain knowledge compare with traditional AI methods in 

terms of accuracy, robustness, and computational efficiency? 

Hybrid approaches that fuse machine learning with domain knowledge consistently deliver superior detection accuracy and 

robustness relative to traditional, single-method AI baselines because they exploit complementary strengths: physics-based 

invariants and state-estimation residuals provide hard constraints that reduce false positives and anchor decisions in power-

system laws, while ML and deep learning components capture complex, data-driven patterns and emergent correlations that 

analytic rules miss. Empirical studies report improved localization of coordinated attacks, higher true positive rates for transient 

and topology-aware manipulations, and better generalization under moderate distribution shift when models incorporate 

topology-aware features or enforce physical consistency during training. Robustness gains are particularly evident against 

stealthy false data injection and distributed attacks when graph neural networks or graph signal priors are included, because 

topology-aware representations make coordinated perturbations more detectable. However, these gains come with tradeoffs in 

computational cost and engineering complexity. Hybrid systems often require additional precomputation, feature engineering 

that reflects network topology, and multi-stage pipelines that combine lightweight edge filters with heavier central analytics. 

That architecture improves operational feasibility by placing simple checks near field devices and reserving complex inference for 

centralized or federated layers, but designing and tuning the interfaces between stages requires specialist expertise in power 

systems, ML, and real-time systems. From a computational-efficiency standpoint, ensembles and physics-augmented deep 

models are heavier than classic SVMs or rule-based detectors, yet model compression, distillation, and hierarchical inference can 

largely recover real-time performance when those techniques are applied thoughtfully. Finally, while hybrid designs raise the bar 

for accuracy and resilience, they also expand the attack surface and the maintenance burden: more components mean more 

upgrade paths to secure, and integrated verification and robust update procedures become essential to avoid introducing 

vulnerabilities during model retraining or topology changes. 

• RQ7: What promising future research directions exist for leveraging AI in enhancing the resilience of smart grid 

cybersecurity? 

The most impactful near-term research agenda combines methodological advances with pragmatic infrastructure and 

governance work. First, building standardized, well-documented datasets and reproducible hardware-in-the-loop benchmarks is 

foundational because algorithmic innovations cannot be reliably compared or hardened without representative, multi-stage 

adversarial scenarios that reflect real telemetry, seasonal loads, and communication impairments. Second, federated and privacy-

preserving learning frameworks merit focused investment because collaborative training across utilities holds the only scalable 

path to diverse labeled experience while preserving customer privacy; these frameworks must include provable defenses against 

model poisoning and secure aggregation primitives that minimize trust assumptions. Third, adversarially robust AI is a research 

priority: robust training, certified defenses for structured inputs, and adversarial evaluation suites that combine cyber and 

physical perturbations will be necessary to move detectors from the lab to the control room. Fourth, explainable, human-

centered AI research must go beyond post-hoc saliency to develop concise, actionable explanations tailored for operators, and 

evaluation protocols that measure whether explanations improve decision quality under stress. Fifth, blockchain-AI hybrids and 

provenance systems can raise confidence in data integrity and auditability, but research should quantify latency and cost 

tradeoffs and propose lightweight provenance layers fit for real-time telemetry. Sixth, digital twins and simulation-driven 

curricula enable safe adversarial training and multi-agent RL for active defense, yet they require fidelity standards and validation 

workflows to avoid training on unrealistic physics. Lastly, cross-disciplinary work that unites power engineers, cyber defenders, 

human factors experts, and legal scholars will be essential: technical improvements alone will not achieve resilient deployment 

without protocols for model governance, certification, incident reporting, and operator training. In pursuing these directions, 

researchers should remain skeptical of single-solution silver bullets and instead aim for layered, verifiable, and auditable systems 

that balance detection efficacy with safety, interpretability, and operational cost. 

B. CHALLENGES 

In reviewing the application of artificial intelligence to smart grid cybersecurity, several persistent challenges emerge that must 

be addressed to ensure the technology’s effectiveness, trustworthiness, and scalability. These challenges span technical, 

operational, and institutional dimensions, reflecting both the inherent complexity of smart grids and the evolving sophistication 

of cyber threats. One of the foremost challenges lies in scalability. While AI models such as deep neural networks and graph 

learning architectures have demonstrated high detection accuracy in controlled simulations and small-scale testbeds, they often 

struggle to maintain performance in real-world, large-scale deployments. The volume, velocity, and heterogeneity of smart grid 

data, including SCADA streams, PMU measurements, and IoT device telemetry, demand computationally efficient methods that 
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can process signals in near real time. The resource intensiveness of state-of-the-art models raises concerns about latency, energy 

overhead, and cost, especially in environments where grid stability depends on sub-second responses. Another significant issue 

is adaptability. Cyber attackers continuously evolve their strategies, often exploiting static detection boundaries or adversarial 

weaknesses in machine learning models. Traditional AI approaches require frequent retraining, which is costly and operationally 

disruptive. The lack of fully adaptive frameworks capable of learning online and adjusting to shifting attack surfaces hampers the 

long-term resilience of AI-driven defenses. This challenge is compounded by the limited availability of labeled datasets 

representing novel or rare attacks, forcing models to extrapolate from incomplete information. 

Explainability and trust present additional obstacles. Many high-performing AI models function as “black boxes,” producing 

accurate but opaque decisions that hinder operator confidence and slow incident response. Regulatory frameworks in critical 

infrastructure further demand transparency and auditability of security systems, requirements that black-box AI cannot fully 

satisfy. Though research in explainable AI (XAI) has adapted techniques like SHAP, LIME, and attention visualization for grid 

contexts, balancing interpretability with detection performance remains unresolved. Explanations that are technically sound but 

cognitively overwhelming for human operators may exacerbate decision fatigue rather than mitigate it. A further challenge stems 

from data imbalance and scarcity. Cyberattack events are relatively rare compared to the massive volume of normal grid 

operations, leading to skewed datasets that bias AI models toward benign classifications. This imbalance results in high false-

negative rates that allow stealthy attacks, such as false data injections, to persist undetected. Privacy restrictions, fragmented 

data ownership across utilities, and the lack of standardized, publicly available datasets further limit collaborative progress. 

Efforts to address these gaps through synthetic data generation and federated learning are still in their early stages and require 

rigorous validation.  

Operational integration also represents a barrier to adoption. Many AI solutions are developed in academic settings without 

consideration of deployment feasibility, integration with legacy grid infrastructures, or compliance with utility regulations. Issues 

such as latency constraints, hardware availability at substations, model retraining cycles, and maintenance costs often receive 

little attention in research prototypes. Consequently, even technically advanced models may be impractical to deploy at scale. 

Lastly, the challenge of institutional coordination and standardization must be emphasized. The absence of common 

benchmarks, unified testbeds, and interoperability frameworks across grid operators prevents consistent evaluation of AI 

methods and slows industrial uptake. Moreover, cybersecurity in smart grids is not purely technical; it intersects with 

organizational policies, workforce readiness, and regulatory oversight. Without cross-disciplinary collaboration, even the most 

promising AI models risk remaining confined to proof-of-concept demonstrations. In summary, while AI brings transformative 

potential to smart grid cybersecurity, these challenges highlight the gap between technical innovation and operational readiness. 

Overcoming them requires advances in scalable architectures, adaptive and explainable models, standardized datasets and 

testbeds, and collaborative governance frameworks that integrate technical solutions with human and institutional factors. 

Addressing these barriers will be crucial to realizing AI’s full promise in securing the next generation of power systems. 

C. FUTURE RESEARCH DIRECTIONS 

The application of artificial intelligence in smart grid cybersecurity remains a rapidly evolving domain, driven by the increasing 

sophistication of cyber threats and the growing dependence of modern societies on resilient energy infrastructures. Despite the 

significant progress achieved, future research must tackle open challenges while exploring innovative methodologies to ensure 

that AI systems for smart grids are scalable, explainable, adaptive, and operationally feasible. One promising direction lies in the 

development of standardized datasets and testbeds that can capture the heterogeneity and dynamic nature of smart grid 

operations. Current research is often constrained by small, fragmented, and non-representative datasets, limiting reproducibility 

and cross-comparison of AI methods. Building comprehensive, open-access repositories of cyber-physical attack scenarios, 

including false data injection attacks (FDIAs), adversarial machine learning exploits, and coordinated multi-stage intrusions, 

would allow researchers to rigorously evaluate models under realistic conditions. Another crucial avenue is the design of 

federated and privacy-preserving AI frameworks. Since utility companies operate under strict confidentiality and regulatory 

constraints, sharing raw data across organizations is rarely feasible. Future work should advance federated learning and 

homomorphic encryption techniques that allow collaborative model training while safeguarding sensitive operational 

information. Such approaches can bridge the gap between academic innovation and industrial deployment by enabling large-

scale, cooperative cybersecurity solutions without breaching privacy. 

Adversarial robustness will also define the trajectory of future studies. Current AI models, especially deep learning architectures, 

remain vulnerable to adversarial perturbations that subtly manipulate inputs to evade detection. Research must move toward 

building intrinsically robust models, such as through adversarial training, certified defenses, and hybrid detection frameworks 

that combine data-driven insights with physics-based invariants of the grid. This will ensure resilience not only to conventional 

attacks but also to adaptive adversaries leveraging AI themselves. The integration of explainable AI (XAI) into smart grid 

cybersecurity represents another pivotal research direction. Future work must refine interpretability methods so they are not only 
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mathematically rigorous but also cognitively aligned with operator needs in high-stress, real-time decision environments. This 

involves creating domain-specific explanation tools that link alerts to physical grid consequences, helping operators rapidly 

identify, verify, and respond to threats. Achieving a balance between transparency and detection accuracy will be critical for 

regulatory compliance and operator trust. A further opportunity exists in AI-empowered digital twins. By creating high-fidelity 

virtual replicas of power systems, digital twins can provide safe environments for testing attack-defense strategies, stress-testing 

AI models, and predicting cascading effects of cyber intrusions on physical infrastructure. Future research should focus on 

integrating AI into these digital twins for real-time situational awareness, automated countermeasure evaluation, and predictive 

maintenance of grid components. 

The intersection of blockchain and AI also holds significant potential. Blockchain can provide decentralized, tamper-resistant logs 

of cyber events, while AI can analyze these records to detect anomalies and ensure trust across distributed energy resources. 

Future work should investigate blockchain-AI hybrids that enable secure data sharing, traceability of transactions, and resilient 

coordination among distributed energy prosumers. Finally, cross-disciplinary and human-centric approaches will be essential. 

Beyond technical advances, research must address institutional, regulatory, and human factors to ensure practical adoption. This 

includes exploring socio-technical systems where AI not only detects threats but also collaborates seamlessly with human 

operators, regulators, and policymakers. Education, training, and trust calibration will be key to embedding AI into operational 

workflows without creating overreliance or complacency. In conclusion, future research in AI for smart grid cybersecurity should 

converge on building scalable datasets, privacy-preserving models, robust and explainable AI frameworks, blockchain-integrated 

security solutions, and AI-driven digital twins. By combining technical innovation with regulatory compliance, human factors, and 

cross-sector collaboration, the next generation of research can significantly enhance the resilience, adaptability, and 

trustworthiness of smart grids in the face of evolving cyber-physical threats. 

7. CONCLUSION 

This review has examined the application of artificial intelligence (AI) in strengthening cybersecurity within smart grids, 

highlighting its transformative potential as well as its inherent challenges. By systematically analyzing recent studies across 

multiple domains, including intrusion detection, anomaly detection, false data injection attack (FDIA) detection, privacy-

preserving frameworks, adversarial defenses, and explainable AI, the study provides a comprehensive overview of the current 

research landscape. The analysis demonstrates that AI-based methods, particularly those leveraging deep learning, 

reinforcement learning, and hybrid approaches, have significantly improved detection accuracy, adaptability, and scalability when 

compared to traditional methods. However, it also reveals that the application of AI in real-world smart grid environments is still 

constrained by critical limitations related to data imbalance, operational integration, model explainability, and adversarial 

robustness. The findings show that the majority of research contributions over the last decade focus heavily on specific attack 

types, such as FDIA, while other emerging threats, including adversarial ML, malware propagation, and supply chain 

vulnerabilities, remain underexplored. Moreover, most studies are validated in controlled environments or small-scale testbeds, 

with limited attention to industrial-scale deployment and real-time performance evaluation. The lack of standardized datasets 

and benchmarks further complicates the ability to compare approaches and assess their generalizability across diverse grid 

infrastructures. These gaps highlight the need for broader and more collaborative research efforts across academia, industry, and 

regulatory bodies. 

Despite these challenges, the review underscores a clear trajectory of progress. The integration of explainable AI tools like SHAP 

and LIME has begun to enhance operator trust and regulatory compliance, while federated and privacy-preserving AI 

frameworks demonstrate strong potential for collaborative defense without exposing sensitive data. Emerging synergies 

between blockchain and AI also promise to address issues of data provenance and trust in distributed energy environments. 

Digital twins and simulation-driven validation stand out as critical enablers for bridging the gap between theoretical advances 

and practical, real-world deployment. 

The overall impact of this research area is significant. AI offers a pathway to more resilient, adaptive, and intelligent smart grid 

cybersecurity frameworks that can mitigate evolving threats while supporting the reliability of critical energy infrastructures. At 

the same time, the study highlights the ongoing tension between technical efficacy and operational feasibility, emphasizing that 

future directions must prioritize not only accuracy and robustness but also interpretability, cost-efficiency, and human-centric 

design. Ultimately, this review contributes to the growing body of knowledge by consolidating insights from diverse research 

streams and identifying opportunities for innovation. To sustain progress, future research should focus on standardized testbeds, 

adversarial robustness, federated learning, blockchain-AI integration, and cross-disciplinary approaches that bridge technical, 

regulatory, and human factors. The insights provided here aim to guide both researchers and practitioners in advancing AI-

driven cybersecurity frameworks that ensure the resilience, security, and trustworthiness of smart grids in the face of increasingly 

complex and adaptive cyber-physical threats. 
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