
Journal of Computer Science and Technology Studies

ISSN: 2709-104X

DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

 JCSTS
AL-KINDI CENTER FOR RESEARCH

AND DEVELOPMENT

Copyright: © 2024 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,

London, United Kingdom.

 Page | 246

| RESEARCH ARTICLE

Scaling with MongoDB: Solutions for Handling Big Data in Real-Time

Mukesh Reddy Dhanagari

Manager, Software Development & Engineering, Charles Schwab

Corresponding Author: Mukesh Reddy Dhanagari, E-mail: mukesh.dhanagari@schwab.com

| ABSTRACT

The technical challenges and practical solutions for scaling big data applications in MongoDB with a real-time environment are

examined in this document. Current relational databases find it difficult to work with rigid schemas and vertical scale limitations,

which prevents them from processing high velocity, high volume, and heterogeneous data. MongoDB’s document-oriented

architecture also provides flexibility and good horizontal scaling by sharding. Dynamic shard rebalancing, inbuilt replication, and

automated failover are all key features combined to achieve high availability and low latency. The study explains how data is

made to span across, and more efficiently, several servers without bottlenecks while optimizing query performance for mission-

critical applications. Moreover, the report explores integration with more advanced technologies like machine learning and

artificial intelligence, enabling database analytics for real-time decision-making. Enhanced indexing strategy and efficient

aggregation framework facilitate fast retrieval and sophisticated data processing. MongoDB has proven to be the perfect

technique for managing heavy, diverse real-world case studies such as e-commerce/game deployments while providing

personalized experiences, competitive performance, and smart infrastructure management. It supplies technical insights and

concrete methodology to build highly scalable, real-time big data solutions with MongoDB. This points the reader to the fact

that the shard key selection should be really careful, with the performance constantly monitored and cloud-based auto-scaling

so that they will have to operate as per the changing business requirements. By leveraging these efficiency, scalability, and

resilience features, organizations achieve efficiency, scalability, and resilience in processing real-time data streams. In essence,

this study offers a reference guide for IT professionals and decision-makers placing MongoDB in environments requiring

continuous innovation and rapid response.

| KEYWORDS

MongoDB, Big Data, Real-time, Sharding, Scalability

| ARTICLE INFORMATION

ACCEPTED: 02 December 2024 PUBLISHED: 25 December 2024 DOI: 10.32996/jcsts.2024.6.5.20

1. Introduction

Big data is the vast amount of structured, semi-structured, and unstructured data generated at high velocity, volume, and

variety. These datasets entirely surpass the data processing capacities of traditional database systems, and thus, advanced

technologies are required for appropriately storing, analyzing, and managing these types of datasets. Real-time data processing

is a process where data is captured, processed, and analyzed as it happens in order to make the right decisions and take swift

action. In the realm of e-commerce, financial services, and the healthcare industry, timely data insights play a crucial role in solving

business issues. With the ever-growing volume of data, organizations from all corners of various industries realize the need for

real-time data processing. With real-time systems, businesses can react faster to changing conditions, maximize customer

experiences, and get better results in their business operation. Real-time data is also used by financial institutions as their market

trend, fraud detection, and investment decision-making are some examples. In e-commerce, real-time processing is necessary for

inventory management, personalized recommendations, and dynamic pricing. Being able to process data instantly is not just a

technological advantage, but a business necessity in today’s fast world.

JCSTS 6(2): 246-264

Page | 247

NoSQL database MongoDB efficiently stores large volumes of data for flexibility, scalability, and high performance. Its

ability to handle unstructured data, dynamic schemas, and high write loads has made it universally available for big data

applications. Its document-oriented nature makes MongoDB suitable for storing complex data types in a way that is scalable and

flexible to changes, and therefore, it has made it the first choice for handling big data in real time. One big advantage of MongoDB

in managing large datasets is horizontal scalability, where the data can be spread across multiple servers. This approach to sharding

in MongoDB deals with vast amounts of data while maintaining high availability and low latency. Also, MongoDB’s built-in

replication and failover mechanisms ensure that the applications where a hard drive fails continue to work. Because of these,

MongoDB is ideal for fields that need to process huge volumes of live information, such as IoT, social networking, and gaming.

This study explores the challenges and solutions of scaling big data applications, particularly real-time data processing,

with MongoDB. It aims to show how MongoDB's strengths and capabilities can deal with the complexities of managing large

datasets in real-time. This research will allow insights into the practical application of MongoDB in different industries and the

basic guidelines of organizations pursuing MongoDB in their big data strategy. The study's structure is designed to understand in

detail how MongoDB plays its part in a real-time data processing environment. The first section introduces the big data concept

and the significance of growing big data. Then, it discusses MongoDB's robustness, scalability, and flexibility and why it is a first

choice for real-time big data applications. The remaining sections delve into the technical side of MongoDB architecture, from

sharding, replication, and data consistency to its application in several industries. The paper concludes with a discussion of the fate

of MongoDB and its future in new technologies.

2. The Challenges of Big Data in Real-Time

2.1 Challenges in Traditional Databases

For years, data storage and management have been based on relational databases. As the scale of data keeps expanding,

there will soon be a lot that relational databases will struggle with for our large data. A major limitation of relational databases is

their inflexibility, which is defined in advance. Data must conform to a fixed structure for these systems, such as table data with

rows and columns. This approach is suited well for smaller, structured datasets but falls apart in modern big data, where there is

flexibility in data models. One of the more important things is that relational databases seldom, if ever, have been built to process

real-time data. Data is presented in these databases in varying formats, such as JSON or XML, which means it must constantly

adapt to these rapidly changing data types.

Another drawback of relational databases is their inefficient scalability in handling big data. With the increasing data

volumes, these systems will have to be vertically scaled, i.e., increase the number of resources (CPU, RAM, and storage) on a single

machine. However, vertical scaling is not always scalable to big data environments. The limitation of the way of dealing with it lies

in the fact that the usage of one server only, such as hardware capacities, for example, and the price of upgrades, makes it

impractical just to depend solely on this approach (Roozbeh et al., 2018). Moreover, traditional relational databases may be

hindered in their ability to fulfill applications requiring real-time processing as data complexity and transaction volume increases

beyond certain thresholds, leading to performance degradation, latency issues, and bottlenecks.

2.2 The Need for Horizontal Scaling

Vertical scaling is typically insufficient for big data applications that need real-time processing, particularly big data

applications. To cope with this limitation, horizontal scaling is now considered the preferred means of scaling databases. Horizontal

scaling, scaling means to spread data across multiple servers or nodes. The advantage of this is that organizations can scale up

their computational capacity by adding more machines to grow calculation work instead of putting all the work in a single machine

to calculate.

Horizontal scaling is very important for big data applications. However, vertical scaling reaches a point where the cost

and inefficiency of handling the mass of data from modern applications are prohibitive. One use case is, for example, e-commerce

platforms with their wide spreads of products, transaction volume, and user engagements with a high stream of data (Kumar,

2019). In such scenarios, horizontal scaling makes the application responsive and performant, which can be done as the system

grows. Horizontal scaling is similar in gaming when real-time data such as user interaction, player actions, and game state

information should be processed in real-time, so gaming platforms can support a huge user base serving on a very low latency

basis.

Scaling with MongoDB: Solutions for Handling Big Data in Real-Time

Page | 248

Figure 1: Key Steps of Horizontal Scaling Process

Another industry where horizontal scaling is very important is the Internet of Things (IoT). Millions of connected devices,

such as sensors, wearables, and smart devices, generate massive streams of data that IoT applications try to process. In order to

derive insights and take action, the data has to be processed in real time. When managing such a high volume of incoming data,

IoT platforms need to scale this data to multiple servers horizontally and remain stable even as the number of connected devices

grows, so horizontal scaling becomes necessary. In addition to being a technical necessity, horizontal scaling is an affordable

solution in industries where data is increasing in volume rapidly, as it enables consideration of multiple server nodes to perform

many operations concurrently. Unlike vertical scaling, businesses can scale their infrastructure incrementally with horizontal scaling

invested in software and hardware upgrades is not required (Conte, 2023). Another feature that allows you to scale out is this: big

data applications can meet the demands of industries such as e-commerce, gaming, or IoT, and yet, it costs and performs without

compromising.

2.3 Why Real-Time Data Matters

Real-time data processing has become a primary element in enabling businesses to stay competitive and responsive to

market needs. It is very important in many industries to improve the user experience, decision-making, and operation. Businesses

have a distinct advantage in quickly changing environments due to the ability to capture and process data instantaneously. The

real change brought about by the real-time data is the role of the user experience. E-commerce platforms use real-time data to

provide custom product recommendations, live pricing, and real-time inventory updates. The system can adjust the

recommendations in real time according to a user's browsing behavior or past purchases and provide a customized shopping

experience far more likely to result in a conversion (Zimmermann et al., 2023). Real-time processing in gaming means that user

actions will show instantly in the game world in gaming. Any delays or lag in feedback affect players' experience and engagement,

and players would expect immediate feedback.

Decision-making is also critical to the use of real-time data. Such ability to make decisions with real-time data can make

a difference in any industry, such as finance, healthcare, and logistics. Financial institutions use real-time data to follow stock prices,

analyze the market situation, and do transactions quickly. Real-time monitoring of patient vitals helps in timely intervention and

improves the quality of care in healthcare. Logistics companies require real-time data to optimize delivery routes, reduce wait

times, and manage inventory efficiently (Kaul & Khurana, 2022). In such situations, a delay in data processing could compromise

the chances to capitalize on or make a profit or cause bad service delivery.

Figure 2: Some of the Benefits of Real-Time Data Matters

Real-time data also plays a major role in operational efficiency. Real-time processing of data enables businesses to

monitor and adjust their processes continuously so that any inefficiencies or bottlenecks can be identified as they happen. For

JCSTS 6(2): 246-264

Page | 249

example, real-time data from sensors and machinery in manufacturing can warn operators of possible problems ahead of time so

that the problems cannot affect production. In supply chain management, the information on stock statuses and flow through

shipping in real-time enables a company to decide on restocking and distribution that minimizes stockouts and improves overall

efficiency. In light of today's competitive market, real-time data processing is no longer a luxury but a necessity for any industry

that wants to stay competitive. Whether increasing the user experience, creating conditions for making relatively informed

decisions, or improving operations, real-time data allows organizations to react quickly to rapidly changing conditions and often

make data-driven decisions that result in improved outcomes.

3. MongoDB's Horizontal Scaling: Sharding Explained

3.1 What is Sharding?

Data can be shared, which enables data to load horizontally on top of multiple machines or clusters. This allows MongoDB

to scale out and handle large volumes of data and high-throughput workloads by splitting data into smaller manageable pieces

called "shards." About a database, there are shards, each of which is a data partition on different machines. This ensures that the

data does not overload any server and can scale as data needs grow.

The shard key is the fieldset determining how data is spread across the shards. It is one of the key decisions involved in

the sharding process, which heavily affects how the data are evenly spread across the system and how the queries will be

performed. A Shard key is used whenever the data is partitioned into chunks and assigned to a particular shard. The system's

efficiency and data distribution are directly correlated to selecting an appropriate shard key (Abdelhafiz, 2020). With a good shard

key, MongoDB will distribute the data even among the shards so that hotspots (shards getting too much data or too many

requests) will not form. It also dictates which shard a given query should go to so experts can efficiently process our query row.

Breaking the data and queries over multiple shards allows MongoDB to support very large datasets, which would be cumbersome

in a single machine.

3.2 How Sharding Works in MongoDB

Three core components are involved in sharding in MongoDB: shards, config servers, and Mongo’s routers. Together,

these components confirm data distribution, fast query routing, and system scalability.

Figure 3: MongoDB - Replication and Sharding

• Network: The network is responsible for sending queries from different users to the shards for information retrieval. The

data is partitioned into each shard based on the shard key, and each shard contains a subset of data. Each of these shards

is responsible for storing chunks of data; chunks refer to the range of shard key values. MongoDB supports spreading a

data set across several replicas to scale vertically from a single database to multiple databases. Replication of shards can

also be used to achieve data redundancy and fault tolerance so the system remains available if one or more of the shares

are down (Solat, 2023). Config Servers store metadata for the sharded cluster. They keep the data distribution, which

shard contains which chunk. A configurator keeps track of the state of the cluster and redistributes shard allocations at

work when new shards are created or when the data is rebalanced. In a MongoDB sharded cluster, there are normally

three config servers to provide redundancy, and the metadata should be available and highly available.

• Mongos Routers: Mongo’s routers are the interface between clients and mongos routers, and the Mongos routers talk

to shared clusters. Shards will route client requests to the proper shard using the shard key. When a client makes a query,

any query that can be resolved to a single shard or a collection of shards in a single node is directed from the router;

otherwise, a broadcast is made to all shards. The routing process is managed by Mongo’s routers, making it possible for

the applications to work with MongoDB as if it were a single database, even though its data is spread over several servers.

The Mongo router allows a client to operate by checking the shard key to find the right location for the relevant data. If

the query contains the shard key, the router can send the request to the particular shard where the data is present,

Scaling with MongoDB: Solutions for Handling Big Data in Real-Time

Page | 250

reducing the overhead and improving performance. Since the router cannot know what shard, the query does or does

not index on, if the shard key is not included in the query, the router will need to send the query to all shards, increasing

latency and resource consumption.

3.3 Shard Key Selection and Best Practices

Designing a sharded MongoDB architecture is hard, but choosing the sharded key well is even harder. A well-chosen

shard key will distribute data evenly amongst the shards, make queries faster, and reduce the need to perform cross-shard

communication. Even poor shard key choices can result in uneven data distribution, hotspots, and inefficient queries.

Importance of Choosing the Right Shard Key

This means that the shard key determines how data will be evenly spread across shards, and a good shard key will weed

out that data is equally distributed across shards. This can cause either overloaded data with too many requests or data amounts

itself with too many requests for the data to be evenly distributed. This is known as data skew, and if not handled properly, it can

cause performance bottlenecks that make horizontal scaling far less advantageous. Make sure the shard key you choose aligns

with the most common query patterns, and ideally, it should be well chosen as well. If a query uses a particular field to filter,

choosing a particular field to route allows the query to process the query on fewer shards than would be necessary otherwise. This

can improve overall performance and reduce latency (Tonellotto et al., 2028).

Figure 4: Choosing a good Shard Key in MongoDB

Common Strategies for Shard Key Selection

Several strategies exist for selecting an appropriate shard key. The decision about the shard key depends on the

application data and query patterns. A hashed shard key is one in which the value of the shard key has been hashed. It uses the

hashed value to distribute the data in the shards evenly, so data will be evenly distributed without hotspots. Range queries may

be deceived with hashed sharding since data is not ordered naturally.

• Shard Keys based on Range of Values: In range-based sharding, researchers use a shard key based on a range of values

such as timestamps, numerical fields, and ordered data. Range-based sharding is good for queries that involve range

searches (e.g., querying for records between two dates). If more frequent queries are made for a select data group, it can

result in skew or regions of data being overutilized while our shards underutilize others.

• Compound shard keys: A compound shard key joins multiple fields to use a more granular shard key. This approach

makes data distribution more precise, and query performance can also be optimized by considering more than one factor.

Suppose your query frequently contains both customer ID and date; you can create a compound shard key based on the

two fields to guarantee even data distribution and an efficient query.

Generally, best practices for selecting the shard key revolve around understanding the application's query pattern,

awareness of the data size and growth, and choosing a shard key that makes the application's query easy and the data as

distributed as possible. Also important are future scalability needs and checking and retaining the shard key's effectiveness as the

data scales.

3.4 Sharding for Real-Time Data

Sharding is an important part of enabling MongoDB to support real-time data in big data applications. MongoDB's

sharding mechanism ensures that the database still performs, is available, and is responsive as the volumes of data continue to

grow and demand for real-time processing continues to rise.

How MongoDB's Sharding Mechanism Ensures High Availability and Low Latency

Sharding in MongoDB distributes data across many shards; thus, the system will remain running if any shard fails.

Replication means that multiple servers will keep the same copies of data (shards). MongoDB uses this redundancy to maintain

data availability even during hardware failure (Georgiou, 2020). MongoDB will also automatically failover on the shard; should the

JCSTS 6(2): 246-264

Page | 251

primary shard go away, then a secondary replica of that shard will pick up and keep the applications running without interruption.

Low latency is very important for real-time applications, and MongoDB's sharding helps keep it low latency by routing the queries

to the appropriate shard based on the shard key. If the shard key is present in a query, it can be routed to a particular shard to

minimize the need to access other shards and shorten the query time. The real-time data can be processed quickly and efficiently

as MongoDB reduces the number of nodes that need to be queried.

Real-Time Performance Benefits of Sharding for Big Data Applications

Sharded architecture is very suitable for big data systems that require real-time processing, such as e-commerce, gaming,

and IoT. In e-commerce, for example, MongoDB can handle large volumes of transactional and user data, allowing for real-time

inventory updates and personalized recommendations. Sharding is used in gaming to process player interactions and game states

in real-time and create the illusion that the operations are happening in real-time, which makes for a smoother experience for the

users (Christian, 2023). In IoT, MongoDB can work with streams of sensor data from millions of connected devices to ensure that

data is processed and analyzed in real-time.

MongoDB's scalability is horizontal. The data can be distributed over multiple shards so that it can serve large data

volumes and high throughput while the system remains responsive and available when data grows. Sharding would also allow

MongoDB to have real-time performance, which means that the queries are routed efficiently down the shards to the most

appropriate shard to reduce the time latency during data query (Pandey, 2020). Sharding is a great way to scale MongoDB

horizontally with large datasets and traffic. Big data can be efficiently managed and have high availabilities and low latency as

MongoDB distributes data across multiple shards. The next key point requires choosing the right shard key, which is important in

achieving data distribution, query performance optimization, and scalability. Suppose you are running real-time big data

applications. In that case, MongoDB's sharding mechanism is one of the most preferred options in the market, as it allows

organizations to process and analyze data quickly and effectively (Dipina et al., 2016). MongoDB makes it possible to manage big

data at scale if the shard key is properly selected and how sharding works is understood.

4. Real-World Applications of MongoDB Sharding

4.1 E-Commerce

With its role in holding and handling massive amounts of data related to product catalogs, user interactions, and

transactions in real-time, MongoDB is a critical player in e-commerce platforms. More generally, e-commerce sites handle

enormous amounts of data related to product details, prices, user reviews, and customer interactions and must keep the interaction

on these sites smooth and responsive (Rahman & Dekkati, 2022). Shareability in MongoDB is possible due to these large datasets,

allowing us to distribute these data across multiple servers for better performance, scaling, and availability.

Scaling horizontally is necessary for e-commerce platforms, which experience increasing data volume because there are

more and more users and product postings. Sharding in MongoDB means that no single server will be overloaded with too much

data or traffic, and the data will be spread across different shards concerning the shard key (Giamas, 2017). In this case, the shard

key is either a product ID, customer ID, or some geographic location, depending on the application's needs. Finally, MongoDB

balances this data across multiple sharded shards to prevent queries from stalling and to use resources across the whole system.

Case Study: Scaling E-Commerce Platforms with MongoDB

A big e-commerce platform employing MongoDB's sharded architecture to scale the data volume due to a fast-growing

product catalog and user base. Millions of product listings, dynamic pricing, real-time inventory updates, and personalized

recommendations to users needed high availability and low data latency access (Tien, 2017). To accomplish this, the platform

deployed MongoDB's sharding to spread product and transaction data across multiple shards so that none of the servers held all

data queries and updates that would need to occur.

MongoDB optimized the data distribution using compound shard keys, such as customer ID and product category. The

ability to offer faster queries for personalized recommendations and stock updates in real-time helped users have a smooth

shopping experience. The system's ability to scale horizontally made it possible for the e-commerce platform to scale its capacity

horizontally to process these rapidly growing volumes of transactions without any performance degradation, even during the peak

shopping day of Black Friday. The sharded mechanism of MongoDB made the response times better and lessened the probability

of a bottleneck or system downtime so that the platform would be able to remain highly available and efficient at scale.

Scaling with MongoDB: Solutions for Handling Big Data in Real-Time

Page | 252

Figure 5: Practical MongoDB Sharding Considerations

4.2 Gaming

Real-time data handling is imperative in gaming applications as the game should be smooth, and the player should be

engaged. Real-time data in terms of games, especially online multiplayer games, can be generated in mass amounts that can be

used to sum those into a real-time game system (Hajibagheri et al., 2028). These include player actions, in-game events,

leaderboards, and chat interactions. This lets gaming platforms grow automatically and dynamically as the volume of player data

expands and data is efficiently spread among multiple servers.

At such a time when these industries are widely fed, horizontal scaling via sharding is highly beneficial for MongoDB,

particularly in the gaming industry, where performance and low-latency access to data are major considerations. Through

dispersing game state data, the player profile, and player interactions among several shards, MongoDB gives the database the

capacity to appropriately deal with high query volumes while providing a consummate gaming experience. By sharding load, expert

ensure that experts do not lose our performance when everyone joins our game to participate in a large-scale multiplayer event

or when a game promotion is announced (Conaway, 2021).

Case Study: Gaming Platforms Using MongoDB for Real-Time Data Scaling

The gaming platform, famous for hosting big international competitive gaming tournaments, was struggling from the

beginning to store real-time data for many players (Zhouxiang, 2022). The platform's current architecture broke down as game

state and player interactions increased, including chat logs and game statistics. To overcome these challenges, the gaming

company resorted to MongoDB's sharded architecture, which divided player data, gameplay stats, and real-time events across

different shards.

Using a shard key on the player and game session ID, MongoDB stored each player's data and their stored session

information on the same shard. It helped minimize query time, especially with cross-shard communication, thus speeding up real-

time gameplay. The ability of MongoDB to replicate data across shards also meant that the platform would remain highly available

and fault-tolerant even with a large scale within a medium multiplayer, single server (Balusamy et al., 2021). Using MongoDB, the

gaming platform could scale to handle the increasing number of players and deliver a great experience just in case of peak demand

without any issues.

4.3 Internet of Things (IoT)

When it comes to IoT, the volumes of data generated by connected devices can be immense, and necessary systems for

managing the torrent of data in real time must be built well. The process needs to be done by IoT platforms to manage the large

volume of data from millions of sensors, devices, and smart objects that constantly generate data streams in the form of

temperature readings, GPS coordinates, or the device status. MongoDB's sharding capabilities enable horizontal scaling and

dealing with large streams of real-time data coming from disparate sets of interconnected devices in our IoT applications

(Mehmood et al., 2017).

This sharding in MongoDB is so that IoT platforms can efficiently distribute data across different servers, process each

device's data, and store it as quickly as possible. It is especially important for applications where data timeliness is paramount for

predictive maintenance, smart home systems, and real-time analytics. Sharding in MongoDB is a very good mechanism that

enables the IoT platform to grow the number of devices and to handle high write throughput with low-latency access to the data

for real-time analysis.

Case Study: IoT Applications Scaling with MongoDB

An IoT company that provided a vast smart city infrastructure was using MongoDB to handle, manage, and scale all the

data generated by thousands of connected sensors spread throughout a city. The real-time data collected by these sensors was

about traffic flow, air quality, weather conditions, and utility usage, which needed to be processed and analyzed in real-time for

city management and operational efficiency.

JCSTS 6(2): 246-264

Page | 253

To achieve this, the company implemented MongoDB's sharding architecture. It distributed sensor data across multiple

shards to allow sensor data from different geographic locations or sensor types not to hurt performance. Time-based shard keys

allow the storage and retrieval of massive time series data as fast as experts can deal with real-time analytics. With increased

sensors and devices being deployed into the IoT, MongoDB's scalability could handle the additional sensors and devices without

rethinking the entire system (Nadeem et al., 2017). This allowed the company to examine data from smart city devices in real-time,

which was processed and analyzed by the sharded MongoDB system, and they could provide critical insights to local government

agencies and further enable city-wide decision-making.

4.4 Other Industries

In addition to e-commerce, gaming, and IoT, MongoDB's sharding is used in other industries, like social media, healthcare,

and finance. MongoDB's ability to process large amounts of data and perform real-time analytics is crucial for the performance

and functioning of these industries.

A huge amount of user-generated content, like social media platforms, generates posts, images, comments, and likes.

The sharding on MongoDB lets these platforms scale horizontally as the users' engagement goes up, accelerating access to the

data in different regions and improving overall user experience (Halvorsen, 2020). Sharding allows user data to be spread over

multiple shards based on a user ID or content ID to enable fast access and reduce latency for interactions on a global scale.

Data Diagnostics: Data Analysis demands collating and analyzing large heterogeneous data sets like patient records,

and medical imaging. Having the option to share a healthcare application's data allows it, through multiple shards, to store and

process an enormous amount of data and have critical patient data readily available in real time for decision-making (Liang et al.,

2028). The technology supports scaling horizontally, where healthcare systems can maintain high availability and data integrity

while handling growing populations of patients.

Big data: Transactional data, market feeds, and customer interactions that financial institutions generate are huge in

volume and must be processed and analyzed in real-time. MongoDB's architecture allows financial institutions to grow their

systems to take on high-volume transactions while maintaining speed and low data retrieval and processing latency. For example,

the time it takes to obtain data from a WAN is critical for applications like fraud detection, algorithmic trading, and market analysis

requiring timely data access.

Sharding is MongoDB's way of building a scalable, efficient application for real-time big data applications in the real

world. MongoDB makes it easy for organizations to scale their systems as demand for products, player churn, inconsistent sensor

data, and increases in e-commerce, gaming, and IoT (Bhadani & Jothimani, 2016). It allows organizations to achieve high

performance, low latency, and high availability by efficiently distributing data across multiple shards. MongoDB's sharding abilities

enable companies in the social media, healthcare, finance verticals, and many others to manage huge, complicated datasets and

gain real-time insights that enable better decisions and smoother customer experiences.

Figure 6: Advantages of MongoDB

5. Key MongoDB Features Supporting Real-Time Data Handling

5.1 Replication and Data Availability

For applications with real-time requirements, the data availability and fault tolerance needs are increased, and so is the

necessity for a good, robust replication mechanism. This is the reason MongoDB has chosen a robust replication mechanism. In

this approach, data is placed on multiple servers, which, to those doing it, is called a replica set. Replica Set is one primary node

that handles all write operations along with several secondary nodes that continuously replicate data from the primary. In the

event of hardware malfunctions or network issues, should the primary node fail, the secondary node will be promoted automatically

Scaling with MongoDB: Solutions for Handling Big Data in Real-Time

Page | 254

to primary status (Alquraan et al., 2018). In environments requiring immediate access to data, this automatic failover process is

critical because it means no service disruption to the application.

In addition, the replication strategy for Microg is biased towards read operations, which are distributed among secondary

nodes, relieving the primary traffic and improving performance. In particular, this distribution is suitable for applications that need

real-time analytics, and it can drastically reduce query latency by providing different avenues for data retrieval. To support high

load with data consistency, the replication process is designed to propagate changes to all nodes very quickly. Despite MongoDB's

eventual consistency model, the replication protocol significantly copes with lag and ensures the data remains as close to the latest

(Thapa, 2022). In such scenarios where real-time decision-making is critical (financial trading or emergency response systems), this

order of data availability and fault tolerance can make or break the difference between achieving success or failure. The architecture

provided by MongoDB ensures this is a resilient architecture based on replica sets, using which it achieves high availability, good

performance, and uninterrupted access in the presence of likely system failures.

5.2 Aggregation Framework

MongoDB's aggregation framework is a strong tool for real-time analytics and complex data processing. The pipeline

approach operates at a point or stage where data is poured into a series of stages, filtering and transforming data and summarizing

information. The stages process the data by matching the documents, grouping the data, sorting the results, and passing the

results to the next stage. This modularity enabled efficient solutions to intricate queries on large datasets. The aggregation

framework is used in real-time applications to extract immediate information from the streaming data, which helps monitor trends,

detect anomalies, and generate reports on the fly.

Figure 7: An Overview of MongoDB Aggregations

The aggregation pipeline is flexible enough to be used for basically all use cases. For example, it can be used by a real-

time dashboard to compute metrics like averages, sums, and counts based on transactional data. In another example, the

framework can filter and group data according to the criteria defined and use the filtered data for dynamic reporting of business

intelligence applications. The framework also supports operations such as lookups and joins, enabling data to be joined in multiple

collections. Given these results, organizations can create a comprehensive data analysis workflow that does not require external

processing. Its value is in complex environments that require both speed and precision for handling queries, allowing for critical

decision-making using up-to-date information, which is based on the efficiency of the aggregation framework in handling

complicated queries.

5.3 Indexing for Performance

MongoDB has several critical features that are used extensively. One is indexing, which enhances query performance and

aids in handling real-time data with low latency. MongoDB provides a range of index types, from single field indexes, compound

indexes, geospatial indexes, and text indexes, respectively, to adapt to different query patterns (Makris et al., 2021). When experts

use an index on one or more fields, a database engine can search and retrieve documents quickly without scanning the entire

collection. Such environments require rapid response times, so this optimization must be performed.

Effective indexing can reduce data retrieval time in real-time systems, thus saving computational load and enhancing the

whole system's efficiency. An instance could be compound indexes that combine the frequently queried fields, for instance, to

simplify search and decrease the number of operations needed to join queries. In addition, MongoDB includes unique indexes for

data integrity and sparse indexes, which index only documents and only if that field is present in the document to improve the

performance. These indexing strategies are designed to work with high volumes of concurrent read and write operations so the

system can still provide consistent performance as data volumes increase.

JCSTS 6(2): 246-264

Page | 255

From a practical point of view, indexing permits programmers and database administrators to influence how queries are

executed to satisfy the demands of specific applications. As data changes, indexes are constantly updated so that even in dynamic

environments, query performance is robust. This capability is especially useful for real-time analytics, where the speed at which

data can be retrieved shapes the time when insights are made. This is why MongoDB's full indexing coverage is necessary for

attaining the low latency and high throughput necessary for today's real-time applications.

5.4 Data Consistency

Data consistency is a key aspect of MongoDB's design in real-time environments where fast data access needs to be

serviced in a manner that is consistent with the data. MongoDB supports an eventual consistency model that ensures data is

consistent over time while being available. UniStore achieves this by supporting configurable write concerns and reads preferences

that allow the applications to choose the desired level of consistency for the operations (Mahgoub et al., 2021). For cases where

immediate consistency is not as important as a speedy response to write, a lower write concern can be applied to support

availability. As such, write concerns are higher in cases where data integrity is crucial, meaning data will only be considered

confirmed when it has been written to at least one node. This flexibility makes MongoDB fit for almost all real-time applications

ranging from high-frequency trading systems to social media platforms.

It exploits mechanisms for handling the inconsistencies in distributed node accesses that will finally reduce and converge

to the same data. Even temporary inconsistencies are possible, but the window in which data is out of sync has been minimized.

In an environment such as an emergency response system where decisions must be made using the latest data, MongoDB's

flexibility with consistent levels provides an upgrade (Karunamurthy et al., 2023). If developers fine-tune the balance between

consistency and availability to meet the application-specific demand, performance can be optimized without sacrificing accuracy.

These strategies enable MongoDB to offer fast access to data and guaranteed integrity, thus making it an appropriate choice for

real-time data usage in any industry.

6. MongoDB's Scalability beyond Sharding

The scalability of MongoDB reaches far beyond sharding and uses powerful replicated methods and easy auto-scaling

with the cloud.

6.1 Replication for High Availability

The key to high availability and fault tolerance in MongoDB is the sophisticated replication strategy based upon the

replica sets of replica sets. In a replica set, primary and secondary nodes accept data asynchronously. It minimizes the risk of

downtime in case of unexpected hardware or network failures and does so automatically (Fonseca & Mota, 2017). If the primary

node becomes unavailable, one of the secondary nodes is promoted to primary as the primary; hence, the system continues

processing transactions without breaking. Consequently, this replication process naturally fortifies scalability for read operations

because they are spread across multiple nodes. When read traffic from the primary federates to the secondaries, organizations can

offload read traffic to higher throughput and lower latency for applications with large read workloads.

Replica sets have been designed for redundancy and resilience in technical configuration. In catastrophic failures, the

data loss is extremely unlikely because every node maintains a complete copy of the dataset. This architecture facilitates horizontal

scaling indirectly as the data is fully replicated. However, the application can distribute the workload to multiple geographically

dispersed nodes to lessen response times and improve access to data locally (Dolev et al., 2017). Additionally, the replication model

allows these other operations to be performed without disrupting service availability. The ability to smoothly take the failing node

to a fully synced secondary without any breaks, making it seamless from a production environment where uptime and real-time

processing are critical, is a big plus. Organizations running MongoDB count on a scalable system resistant to hardware

inconveniences, network failures, and other disruptions such that applications backed by MongoDB preserve a stable and readily

available data state.

Scaling with MongoDB: Solutions for Handling Big Data in Real-Time

Page | 256

Figure 8: High Scalability With MongoDB Sharding

6.2 Auto-Scaling with Cloud Platforms

Today's changing data centers mean that auto-scaling is a must-have to handle changes in workloads and avoid manual

intervention or downtime. Integrating modern cloud platforms allows the auto-scaling of resources to handle real-time needs in

MongoDB. Cloud service providers such as AWS provide elastic computing and storage facilities (Choudhary et al., 2021). MongoDB

can use them to dynamically resize cluster capacity based on metrics like CPU usage, memory consumption, and I/O performance.

U instance or resource resources are automatically provisioned in cloud infrastructure if an application faces a traffic spike or an

unexpected surge in the data volume. Besides improving performance, this auto-scaling reduces operational costs by scaling

resources back to a minimum when demand is low.

Whenever MongoDB's auto-scaling is implemented in cloud environments, it involves orchestration tools and monitoring

systems that continuously monitor the system's performance. For example, integrated solutions can increase the storage space

occupied by nodes available on a replica set and add new nodes to the replica set. This allows the administrators to remain out of

the complexities of manual scaling and ensures that the database responds even under heavy workloads. For example, practical

applications require a real-time analytics platform to process streaming data from millions of sensors or e-commerce applications

that are exposed to peak user activity when promotional events occur unpredictably. MongoDB's cloud-integrated auto-scaling

scales the system each time, giving a robust solution as the workloads are automatically redistributed among the clusters and

balanced for performance.

Combining a reliable replication strategy and auto-scaling agility provides a real-time solution to handle big data. Its

replication mechanism guarantees data integrity and availability while auto-scaling on the cloud while keeping the performance

without any workload fluctuations (George, 2022). The dual approach gives enterprises the flexibility to define an application that

can scale and be resilient across all demands while allowing for quick adjustment. MongoDB is an ideal solution for today's data

and driven environment.

7. Methodology for Implementing MongoDB in Real-Time Big Data Applications

A structured methodology is needed to implement MongoDB for running real-time Big Data applications, establishing

the architectural planning, deciding on the shard key, scaling up the cluster, performing performance testing, and ensuring data

consistency. The database infrastructure is created to meet hard data volume, access patterns, and low latency requirements while

also being scalable and robust.

7.1 Planning MongoDB Architecture

The first step of the methodology is to design a scalable MongoDB architecture to process large amounts of data in high

volumes efficiently and operate at high velocity. In this phase, the planning process consists of determining the expected data

volume, user access pattern, and latency requirements. The first step that the architects take is mapping out the logical structure

of the database, document design, indexing strategies, and partitioning techniques. Hardware configurations and network

topologies that support horizontal scaling are also evaluated (Chen et al., 2016). In practice, database administrators and system

architects jointly need to estimate the optimal combination between performance and cost in this step. Furthermore, risk

assessments and capacity planning are done to predict future data expansion and system requirements. A fully detailed

architectural blueprint for the MongoDB deployment is to make it flexible enough to adjust to the changes in business needs yet

stable enough for real-time analytics.

JCSTS 6(2): 246-264

Page | 257

7.2 Choosing the Right Shard Key

The third step is to pick the best shard key because it is important to distribute the data evenly around the cluster. The

application’s query pattern analysis starts the methodology for selecting the shard key. To evaluate the performance of different

shard key candidates for load, one of the tasks that database engineers are required to perform is to review pairs of historical

query logs that have similar workloads and then conduct simulations with real data samples. The frequency of read and write

operations on each field and the uniqueness of the candidate key are important factors that also consider the skew of data (Rao

et al., 2029). Hashed keys for even distribution, range-based keys for querying ordered data, and compound keys for multi-

dimensional query optimization are considered. Pilot testing in a controlled environment allows one to run testing for query

response time and balancing shards. The information collected results in data that can be used as a practical tool for the final

decision to ensure that experts will have high throughput and low latency during peak operation times.

7.3 Scaling MongoDB Cluster

Scaling the MongoDB cluster is an iterative action that accepts more data and user requests. The methodology has several

steps. Administrators initially watch current workload metrics in the dashboard and logger and pinpoint bottlenecks. This analysis

is based on incremental scaling strategies where new shards are added, or old data partitions are re-balanced. Detailed migration

plans and rollback procedures for each scaling step are in place to minimize new impacts on operations (Gade, 2021). Using replica

sets in shards also improves scalability and fault tolerance by preventing a single node's failure to discontinue the data's functioning

and maintaining continuous monitoring of system performance and automatic notification systems to allow system administrators

to adapt their resources dynamically in response to changes in demand. It empowers the cluster to keep high performance as the

system grows.

Table 1: Methodology for Implementing MongoDB in Real-Time Big Data Applications: A Structured Approach to Scalability,

Performance, and Data Consistency

Step Description Key Considerations Tools/Methods

Planning

MongoDB

Architecture

Design scalable MongoDB

architecture to process

large data volumes and

high velocity.

Data volume, user access pattern,

latency requirements,

hardware/network configurations.

Logical structure, document design,

indexing strategies, partitioning

techniques, risk assessments, capacity

planning.

Choosing the

Right Shard Key

Select optimal shard key

for data distribution across

the cluster.

Query pattern analysis, frequency of

reads/writes, uniqueness, data skew,

shard key types (hashed, range,

compound).

Query log analysis, simulations, pilot

testing for query response time, shard

balancing.

Scaling MongoDB

Cluster

Scale cluster to handle

growing data and user

requests.

Bottleneck identification, incremental

scaling, rebalancing partitions, replica

sets, fault tolerance.

Monitoring dashboard, logger, scaling

strategies (adding shards, rebalancing),

rollback procedures, and dynamic

resource adaptation.

Performance

Testing and

Tuning

Test and tune system

performance to meet real-

time processing needs.

Query latency, throughput, resource

utilization, tuning indexes, query

structures, and hardware

configurations.

Performance testing tools,

benchmarking, memory allocation,

write concern adjustments, regular

performance audits.

Ensuring Data

Consistency and

Availability

Maintain data consistency

and high availability as

system scales.

Data integrity, replication strategies,

consistent hashing, failover,

transaction reliability.

Replica sets, failover systems,

consistency checks, MongoDB

transactions, periodic replication

audits.

7.3 Performance Testing and Tuning

The methodology incorporates performance testing and tuning to satisfy the real-time processing requirement for

MongoDB deployment. Engineers deploy a set of performance testing tools to mimic a variety of workloads, such as peak traffic

conditions, as well as continuous data feed-in for processes. Researchers benchmark parameters such as query latency, throughput,

and resource utilization during the testing stage. The direction for doing so can be based on these tests, and tuning adjustments

are then made to indexes, query structures, and hardware configurations. The best practices are optimizing data models, fine-

tuning memory allocation, and tweaking write concerns to balance performance and data durability. Regular performance audits

are scheduled to assess that tuning measures keep advancing over and over as time proceeds and to change the system according

to application needs (Gellings, 2020). As a result, MongoDB guarantees continuous tuning of this process until it provides low

latency and high throughput for real-time analytics.

Scaling with MongoDB: Solutions for Handling Big Data in Real-Time

Page | 258

7.4 Ensuring Data Consistency and Availability

The final methodological focus is to ensure that data consistency and availability are preserved as the system grows. In

real-time applications, data integrity must be maintained, which is done through replication strategies, consistent hashing, and

well-configured writes and reads concerns. The methodology involves creating multiple replicas sets on a cloud cluster to ensure

every shard's data has redundantly been put on nodes. Failover from failed nodes and secondary replicas are used to keep the

system available in case node failures are automatic. Data drift is avoided between replicas by regular consistency checks and

synchronization routines. MongoDB's transaction mechanisms also guarantee that operations across many shards are reliable

(Ouyang et al., 2021). These measures ensure that an acceptable balance between high availability and high consistency is

maintained in the critical aspect of real-time big data applications. Such conditions are further ensured by periodic audits of

replication status and system logs, which will detect and resolve any data integrity issues remotely as soon as possible.

 8. Case Studies: MongoDB in Action

Today, with the ability to handle large amounts of real-time data across the board and with horizontal scaling and

sharding, MongoDB has allowed organizations from every industry to overcome performance and scalability problems. This report

studies three different case studies where MongoDB was implemented in the real world on e-commerce platforms, IoT data

streaming, and Gaming. Each case study then outlines the technical challenges encountered, the practical solutions implemented,

and the performance metrics obtained, giving a strong idea of why MongoDB is the leading big data application technology.

8.1 E-Commerce Platform Scaling

Rapid growth in clients in a product catalog and user base led to heavy transactional and product data volumes for an

internationally recognized e-commerce company. During peak shopping periods, increasing query lattices and system downtime

plagued the platform. To overcome these issues, a Bengaluru-based startup company adopted MongoDB's sharded architecture,

which enables the horizontal scaling of the data evenly among multiple servers. With a compound shard key of customer ID and

product category, the platform could route queries efficiently, cut down cross-shard communication, and maintain real-time low-

latency inventory updates and personalized recommendations (Alkhammash, 2022).

Setting up several shards to break data apart among the geographic regions and product types was the technical

implementation. With it, the e-commerce system could scale incrementally by adding new sharding as transaction volumes

increased. MongoDB's built-in replication also provided high availability and fault tolerance - if a shard experienced hardware

issues, the secondary replica would step in. The query response times improved drastically, and the system's throughput increased

by more than 40% during Black Friday-style sales events. The technical team documented that data hotspots could occur without

proper shaft key selection, which prevents the platform from a smooth user experience while still under heavy load. Through this

case study, researchers identify how robust MongoDB's scaling capabilities and real-time data processing techniques have turned

the e-commerce operations Upside that of e-commerce operations with minimal latency issues and constant system performance

(Vieira & de Sousa, 2023).

8.2 Gaming Industry Real-Time Data Handling

In online Gaming, the swift handling of gigantic amounts of player data is paramount to providing an indistinguishable

player experience. One of the popular gaming companies also called the hosting company for international tournaments, faced

the challenge of data overload during the peak gaming session. Its existing architecture could not cope with the large amount of

real-time player interactions, game state changes, and event logs while still keeping gameplay from slowing down.

To resolve these challenges, the gaming platform used MongoDB's sharded system to shard the data according to player

and session identifiers. The platform reduces latency for cross-shard data retrieval by decreasing apparent data movement

performance to the extent of aligning the shard key with the most frequently queried fields (Solat, 2023). This also enabled

MongoDB to replicate data across shards and still guarantee high availability, which meant that the game was uninterrupted in

the event of node failure. The query response time decreased by nearly 35 percent on average, its concurrent capacity went up,

and the system was able to support tens of thousands of simultaneous players without any degradation in performance.

JCSTS 6(2): 246-264

Page | 259

Figure 9: Data Analytics Fuelling Growth in the Gaming Industry

Additionally, the gaming company built a real-time monitoring system that monitored shard performance and data

distribution and balanced data loads in real-time. It was the technical team's cherry to talk about how this proactive strategy,

coupled with MongoDB's inherent scalability, enabled real-time data handling and gave them invaluable insights for future game

design improvement. This case study shows how the scalability of MongoDB's sharding strategy is a competitive advantage for

the gaming industry by ensuring that real-time data processing works within the high throughput and responsiveness needed for

generating a superior user experience.

8.3 IoT Data Streaming with MongoDB

A great wave of IoT devices has pushed us to create unprecedented data streams that need to be processed and analyzed

instantly. As an IoT solutions provider, managing a smart city infrastructure with ever-increasing numbers of connected devices

and streams of data it generated demanded to be challenged. The processed data needed to be on time, ranging from utility

usage data to traffic flow and air quality, to support urban management and operational efficiency of urban decision-making in

real time. In order to do this with so much data, the company moved to MongoDB sharding architecture with a time-based shard

key. Geographic location and time intervals were partitioned for sensor data to allow for efficient storage and retrieval of time

series data, without which organizing data in any other way would have only led to wastage (Melakessou et al., 2020). Throughput

and significantly reduced data ingestion latency were achieved by MongoDB's ability to distribute the write load across multiple

shards. Real-time data aggregation and analysis were important to allow local government agencies, such as traffic signal

adjustments based on live congestion data or public infrastructure maintenance predictions, to be actionable to the company's

engineers.

The ability to accommodate the receiving of sensor data in any format without disrupting data flow and the flexibility of

its document model round out additional real-time capabilities by MongoDB. The replication achieved the architecture's fault

tolerance so that the system would function smoothly even if a node went offline. Real-time analytics triggered alerts and

automatic responses almost in real-time. According to performance benchmarks, there has been a huge reduction in data

processing delays. A case study demonstrates how MongoDB's scalable and agnostic architecture is perfectly suited for such high

throughput and low latency requirements of IoT applications and how they can enable efficient data streaming and real-time

decision-making (Bandara et al., 2021).

These case studies prove MongoDB's utility in real-world domain cases. MongoDB has proven its technical robustness,

scalability, and ability to deliver the stringent requirements of modern real-time applications by addressing specific technical

challenges like managing the surge of transactions in the e-commerce scenario and having uninterrupted gameplay in competitive

Gaming and processing massive IoT data streams. Different implementations will emphasize the relevance of choosing suitable

shard keys, the need to compensate for faults by replication, and the need to monitor system performance continuously to achieve

high availability and low latency. The practical experience from these case studies is a guide for other organizations seeking to use

MongoDB for scalable, high-performance big data solutions.

9. Challenges and Considerations When Scaling with MongoDB

When the goal is to scale MongoDB to feed large-scale real-time data processing environments, it is not just obtaining

1,000 good indexes or moving to a white supply of storage; it is complicated by a series of challenges that must be spiffy and

planned out with precision.

9.1 Sharding Complexities

While it makes MongoDB horizontally scalable, introduced complexities can affect both performance and operational

stability. The main concern here is ensuring data is evenly spread in different shards. Hotspots, which result from an improperly

chosen shard key and have an imbalanced distribution of data on separate shards, occur not only during development but also in

production. Additionally, uneven distribution can lead to degraded query performance and increased latency for a query pointing

Scaling with MongoDB: Solutions for Handling Big Data in Real-Time

Page | 260

towards data on a heavily overburdened shard (Khandelwal, 2019). In addition, the process of balancing data among shards

requires constant surveillance and proactive administration. The exact nature of how data will grow is inherently hard to predict,

making administrators decide anew and rebalance shards from time to time to prevent it from slowing down. In addition, for

shards, the subtle technical complexities of ensuring shard metadata consistency amongst config servers and judicious

procurement of routes require a fair amount of technical sophistication and close planning to avoid system failure. Recent studies

on MongoDB scaling indicate that these challenges require robust monitoring tools and putting in place best practices when it

comes to selecting shard keys.

Table 2: Key Challenges and Considerations for Scaling MongoDB in Real-Time Big Data Environments

Challenge/Consideration Description Key Points

Sharding Complexities

Horizontal scalability via sharding introduces

complexities. Ensuring even data distribution across

shards is crucial to performance.

- Uneven shard distribution leads to

hotspots and performance

degradation.

- Requires constant surveillance and

proactive rebalancing.

- Complex shard metadata

management.

Data Migration &

Rebalancing

Moving data between shards during scaling can

temporarily disrupt system performance. Requires careful

scheduling to minimize impact.

- Data migration is resource-heavy

and needs to be scheduled during off-

peak hours.

- Data consistency must be maintained

during migration.

Cost Considerations

Scaling MongoDB can incur significant costs, including

cloud infrastructure and operational overhead. Balancing

performance and budget is key.

- Costs from cloud instances, storage,

and disaster recovery setups.

- Auto-scaling helps balance resource

use.

- Labor costs for skilled administrators.

9.2 Data Migration and Rebalancing

When the MongoDB cluster scales, the data migration and rebalancing operations are critical, and they need to be

executed with minimal impact. It will move data from one shard to another when there is a change in the volume of data or the

pattern of queries. The performance during the rebalancing must be considered as an ineffective data migration strategy. The data

distribution is managed dynamically by using chunk splitting and merging. While this may be the case, these operations are

resource-heavy and could temporarily disrupt system responsiveness unless properly scheduled. The advanced strategies include

scheduling migrations in off-peak hours, throttling data movement rates, and using monitoring tools for the progress and

performance impact of the migration (Afzal & Kavitha, 2018). Also, the process of rebalancing should be data consistency and

integrity. In MongoDB, automated rebalancing features assist in distributing the data evenly among shards. However, they still

need to be monitored by administrators to remedy any irregularities that may cause loss or corruption of data quickly. The

challenge is to do these migrations while the system is live, without downtime, and still provide real-time data access.

9.3 Cost Considerations

While it is technically challenging to scale MongoDB, serious cost considerations must be made regarding the scaling

strategy's design and implementation, which affects the overall scale. From cloud services, infrastructure investment, and

operational overhead for maintaining a large, distributed database system, there are many places where the cost of scaling can

come from. The costs involved in cloud environments are instance pricing, storage costs, data transfer fees, and expenses for high

availability and disaster recovery setups (Liu et al., 2023). On the one hand, performance and budget constraint balancing require

a strategic approach for organizations that have to strike the right tradeoff between scaling out (adding more nodes) and scaling

up (using more expensive hardware resources). Further, cost efficiency can be improved using auto-scaling features on many cloud

platforms, which permit the organization to scale the resources according to the current demand. It is an approach that reduces

unnecessary costs during periods of low activity and has adequate resources at times of higher activity. Additionally, maintaining

and monitoring sharded clusters would entail technical costs (such as labor costs for experienced database administrators) that

must be included in a budgeting process. In the final stretch, however, the successful scaling of MongoDB requires a careful duel

between technical performance and cost-effectiveness, wherein the system scales affordably and, as such, does not impede on its

efficiency or its ROI satisfaction.

JCSTS 6(2): 246-264

Page | 261

Scaling of MongoDB for real-time Big data applications is complex and has multifaceted technical, operational, and

financial challenges (Mehmood & Anees, 2020). When sharding gets complicated, it is important to select the shard key to monitor

the activity continuously to prevent hotspots. The importance of planning is made evident in data migration and rebalancing

demands to preserve performance and integrity. Additionally, as costs are a factor, balanced approaches between performance

and budget are required. With these challenges addressed, the enterprise can usefully leverage the full capability of MongoDB

and effectively maintain a scalable, resilient, and cost-efficient system.

Figure 10: Real-Time Data Analytics with MongoDB

10. Future of MongoDB and Big Data

10.1 Innovations in MongoDB for Big Data

New features in MongoDB to process huge data

The assortment of features currently in the works for MongoDB's next influx of features all focus on improving MongoDB's

capacities in managing and processing huge data sets. According to the next generation of sharding mechanisms, dynamic shard

rebalancing is expected to be incorporated, which will automatically redistribute data throughout the clusters according to real-

time workload demands. Doing this heaps up the manual action, which decreases latency and increases the query performance

for high-volume transactional workloads. Furthermore, strategies for improved indexing are set, enabling more efficient access to

unstructured and semi-structured data (Azad et al., 2020). The enhanced MongoDB capabilities will allow organizations to process

the data in real-time without sacrificing accurate or reliable results. Also, improvements in storage engines will make writes take

place faster, use better compression algorithms, reduce storage costs, and improve their performance in handling petabytes of

data.

Integration with New Technologies: Machine Learning, AI, and More:

In parallel with continuing to improve the core database, MongoDB intends to drive integration with more advanced

technologies such as machine learning and artificial intelligence. MongoDB aims to provide embedding AI capabilities directly to

the database infrastructure so that in-database analytics can be supported and the models can run against the stored data without

significant data extraction. Data latency and decision-making processes in time applications are reduced through this approach.

In addition, it is anticipated to provide native support for the popular machine learning frameworks and simplify the deployment

of the predictive models in the existing environments for easy integration of intelligent data analysis in organizations. MongoDB

also focuses on integrating cloud-based analytics services and IoT platforms so that MongoDB is versatile across various

deployment environments (Anadiotis et al., 2022). They aim to create a robust technological platform that can scale efficiently and

support the latest data science practices with lots of complexity in real aspects.

10.2 The Role of MongoDB in the Evolving Tech Landscape

How MongoDB Continues to Innovate for the Future of Big Data

MongoDB's journey of evolution is dedicated solely to continuously improving and coping with new evolving data

challenges. The platform's flexible schema design and horizontal scaling make it a perfect solution for modern enterprises that

must be agile in handling different data types. With increasingly more finance, healthcare, and e-commerce industries producing

more complex, voluminous data streams, MongoDB is constantly developing its architecture to prepare for the challenge. The

research and development in this area focus on improving the data distribution algorithm, refining the replication protocol, and

even developing the real-time processing pipeline. Nevertheless, these technical innovations ensure that MongoDB remains ready

to deal with massive bandwidth and low latency needs in data ecologies that are becoming increasingly split and decentralized.

MongoDB continues to evolve as a critical component of forward-thinking organizations' digital transformation strategies by

maintaining the integration of user feedback while utilizing new hardware and network technologies.

Scaling with MongoDB: Solutions for Handling Big Data in Real-Time

Page | 262

Predictions for MongoDB's Role in Emerging Technologies

In the future, industry analysts predict that MongoDB will enable the adoption of emerging technologies. With IoT devices

and greater use of 5G rolling out, real-time data streams have become the need of the hour, and databases are required to manage

the rushing data. With such an architecture, MongoDB is well-suited for powering smart cities, autonomous vehicles, and

connected industrial systems. In addition, as the utilization of edge computing increases, experts should see MongoDB closely

integrate with distributed computing frameworks to enable data processing to take place 'closer to the source'. It will help decrease

latency and popularize effective applications.

MongoDB is also devoted to security and is taking additional steps with security by adding features including advanced

encryption and access control to establish its place in the data integrity and privacy bases environment. The future of MongoDB

is a part of the larger evolution of the tech landscape. MongoDB's continued innovation will continue to be important to

organizations, allowing them to take full advantage of the big data that will characterize an increasingly connected world (Cofas,

2023). For that reason, MongoDB not only enhances its core database capabilities but also plays a very important role in driving

digital innovation. Its future developmental potential includes scalability, security, and efficiency, leading to transformative change

across all sectors that depend on big data.

Figure 11: Key Features of MongoDB

11. Conclusion

The report has shown how a MongoDB implementation is robust, scalable, and able to provide high performance in big

data real-time environments. As a technical foundation for dynamic industries, including e-commerce, gaming, and the Internet of

Things, its flexible document-oriented design, horizontal scalability via sharding, and built-in replication meet the stringent

requirements of dynamic units. The ability of MongoDB to ingest unstructured and semi-structured data and process it in very low

latency allows it to be the perfect answer for organizations that want to implement real-time analytics and rapid decision-making

systems. Horizontal scaling is a key strength of MongoDB. It does an efficient sharding to distribute the data evenly across multiple

nodes, and nobody server will be a performance bottleneck. This design allows the database to handle a large number of

transactions while still being highly available and fault-tolerant. Using replica sets further bolsters continuous data replication and

failover, making sure real-time applications will continue to run in noisy failure situations like hardware failures or network

problems.

Specifically, the report has also pointed out some technical features that make MongoDB real-time processing excellent.

The aggregation framework allows complex query execution and data transformation on the fly, and the diverse indexing strategies

reduce the query execution times drastically. Also, MongoDB’s capability to interconnect with far more advanced technologies

similar to machine learning, artificial intelligence, and cloud-based auto-scaling platforms makes it a future-ahead solution in an

increasingly technical world. These innovations improve the performance and guarantee that MongoDB will ride the wave of

changes and rapid evolution in the industry and the industry needs, making it exceptionally practical and technical for

contemporary applications. The presentation of practical case studies in the report demonstrates the success of MongoDB in

different domains. From scaling an e-commerce platform for dynamic pricing and real-time inventory updates to supporting peers

for massive scale multiplayer gaming environments with little latency to managing continuous data streams from IoT devices,

MongoDB has repeatedly shown that it can be used to fit the problem. These real-world implementations provide insight into

these processes that can be used as a guide to organizations moving from traditional databases to systems that are fit for the

purpose of providing real-time data processing.

With its scalability through sharding, great capacity to replicate, and ease of access to analytics and cloud infrastructures,

MongoDB is an ideal solution for real-time big data applications. With businesses generating and relying on massive volumes of

data, there is an ever-increasing need for a database system that can deliver high performance, reliability, and flexibility. MongoDB

invites organizations to transition from merely a technology tool to an integral part of the digital transformation strategy, the

driver of operational efficiency, and the source of rich data insights. Big data processing will depend on the innovation it has every

day, and its underlying technologies should be flexible and adaptive. Moreover, having MongoDB at the forefront, enterprises now

have an opportunity to create resilient, scalable systems to address current and future needs. This is a call of action to businesses

JCSTS 6(2): 246-264

Page | 263

with the urge to implement robust, contemporary database solutions that can deal with the complexity and volume of the data-

driven world country.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.
Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher, the editors and the reviewers.

References

[1] Abdelhafiz, B. M. (2020, December). Distributed database using sharding database architecture. In 2020 IEEE Asia-Pacific Conference on

Computer Science and Data Engineering (CSDE) (pp. 1-17). IEEE.

[2] Afzal, S., & Kavitha, G. (2018, December). Optimization of task migration cost in infrastructure cloud computing using IMDLB algorithm. In

2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET) (pp. 1-6). IEEE.

[3] Alkhammash, M. (2022). A blockchain and IoT based framework for decentralised smart campus environment (Doctoral dissertation, University

of Sussex).

[4] Alquraan, A., Takruri, H., Alfatafta, M., & Al-Kiswany, S. (2018). An analysis of {Network-Partitioning} failures in cloud systems. In 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 18) (pp. 51-68).

[5] Anadiotis, A. C., Balalau, O., Conceição, C., Galhardas, H., Haddad, M. Y., Manolescu, I., ... & You, J. (2022). Graph integration of structured,

semistructured and unstructured data for data journalism. Information Systems, 104, 101846.

[6] Azad, P., Navimipour, N. J., Rahmani, A. M., & Sharifi, A. (2020). The role of structured and unstructured data managing mechanisms in the

Internet of things. Cluster computing, 23, 1185-1198.

[7] Balusamy, B., Kadry, S., & Gandomi, A. H. (2021). Big data: concepts, technology, and architecture. John Wiley & Sons.

[8] Bandara, E., Liang, X., Foytik, P., Shetty, S., Ranasinghe, N., & De Zoysa, K. (2021). Rahasak—Scalable blockchain architecture for enterprise

applications. Journal of Systems Architecture, 116, 102061.

[9] Bhadani, A. K., & Jothimani, D. (2016). Big data: challenges, opportunities, and realities. Effective big data management and opportunities for

implementation, 1-24.

[10] Chen, T., Gao, X., & Chen, G. (2016). The features, hardware, and architectures of data center networks: A survey. Journal of Parallel and

Distributed Computing, 96, 45-74.

[11] Choudhary, A., Verma, P. K., & Rai, P. (2021). A walkthrough of amazon elastic compute cloud (Amazon EC2): a review. International Journal

for Research in Applied Science and Engineering Technology, 9(11), 93-97.

[12] Christian, S. A. (2023). Enhancing Virtual Reality Experiences with Unity 2022: Use Unity's latest features to level up your skills for VR games,

apps, and other projects. Packt Publishing Ltd.

[13] Cofas, E. (2023). The role of big data in digitalizing information. Scientific Papers Series Management, Economic Engineering in Agriculture &

Rural Development, 23(3).

[14] Conaway, E. P. (2021). Server Worlds: Preservation, Virtualization, and Infrastructures of Control in Online Gaming. University of California,

Irvine.

[15] Conte, A. R. (2023). Scaleup Strategies–How to scale Impacting (Doctoral dissertation, Politecnico di Torino).

[16] Dipina Damodaran, B., Salim, S., & Vargese, S. M. (2016). MongoDB vs MySQL: a comparative study of performance in super market

management system. International Journal of Computational Science and Information Technology (IJCSITY), 4(2), 31-38.

[17] Dolev, S., Florissi, P., Gudes, E., Sharma, S., & Singer, I. (2017). A survey on geographically distributed big-data processing using MapReduce.

IEEE Transactions on Big Data, 5(1), 60-80.

[18] Fonseca, P. C., & Mota, E. S. (2017). A survey on fault management in software-defined networks. IEEE Communications Surveys & Tutorials,

19(4), 2284-2321.

[19] Gade, K. R. (2021). Migrations: Cloud Migration Strategies, Data Migration Challenges, and Legacy System Modernization. Journal of

Computing and Information Technology, 1(1).

[20] Gellings, C. W. (2020). The smart grid: enabling energy efficiency and demand response. River Publishers.

[21] George, J. (2022). Optimizing hybrid and multi-cloud architectures for real-time data streaming and analytics: Strategies for scalability and

integration. World Journal of Advanced Engineering Technology and Sciences, 7(1), 10-30574.

[22] Georgiou, M. A. (2020). Enabling workload scalability, strong consistency and elasticity with transactional database replication (Doctoral

dissertation, Department of Electrical Engineering, Computer Engineering and Informatics, Faculty of Engineering and Technology, Cyprus

University of Technology).

[23] Giamas, A. (2017). Mastering MongoDB 3. x: An expert's guide to building fault-tolerant MongoDB applications. Packt Publishing Ltd.

[24] Hajibagheri, A., Sukthankar, G., Lakkaraju, K., Alvari, H., Wigand, R. T., & Agarwal, N. (2018). Using massively multiplayer online game data to

analyze the dynamics of social interactions. Social interactions in virtual worlds: An interdisciplinary perspective.

[25] Halvorsen, H. B. (2020). Refining Commercial Open Source: Driving Adaption and Growing Ecosystems (Master's thesis, NTNU).

[26] Karunamurthy, A., Yuvaraj, M., Shahithya, J., & Thenmozhi, V. (2023). Cloud Database: Empowering Scalable and Flexible Data Management.

Quing: International Journal of Innovative Research in Science and Engineering.

[27] Kaul, D., & Khurana, R. (2022). Ai-driven optimization models for e-commerce supply chain operations: Demand prediction, inventory

management, and delivery time reduction with cost efficiency considerations. International Journal of Social Analytics, 7(12), 59-77.

[28] Khandelwal, A. (2019). Queries on Compressed Data. University of California, Berkeley.

Scaling with MongoDB: Solutions for Handling Big Data in Real-Time

Page | 264

[29] Kumar, A. (2019). The convergence of predictive analytics in driving business intelligence and enhancing DevOps efficiency. International

Journal of Computational Engineering and Management, 6(6), 118-142. Retrieved from https://ijcem.in/wp-content/uploads/THE-

CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf

[30] Liang, X., Shetty, S., Tosh, D., Bowden, D., Njilla, L., & Kamhoua, C. (2018). Towards blockchain empowered trusted and accountable data

sharing and collaboration in mobile healthcare applications. EAI Endorsed Transactions on Pervasive Health and Technology, 4(15).

[31] Liu, M., Pan, L., & Liu, S. (2023). Cost optimization for cloud storage from user perspectives: Recent advances, taxonomy, and survey. ACM

Computing Surveys, 55(13s), 1-37.

[32] Mahgoub, A., Wang, L., Shankar, K., Zhang, Y., Tian, H., Mitra, S., ... & Zhang, D. (2021). {SONIC}: Application-aware data passing for chained

serverless applications. In 2021 USENIX Annual Technical Conference (USENIX ATC 21) (pp. 285-301).

[33] Makris, A., Tserpes, K., Spiliopoulos, G., Zissis, D., & Anagnostopoulos, D. (2021). MongoDB Vs PostgreSQL: A comparative study on

performance aspects. GeoInformatica, 25, 243-268.

[34] Mehmood, E., & Anees, T. (2020). Challenges and solutions for processing real-time big data stream: a systematic literature review. IEEE Access,

8, 119123-119143.

[35] Mehmood, N. Q., Culmone, R., & Mostarda, L. (2017). Modeling temporal aspects of sensor data for MongoDB NoSQL database. Journal of

Big Data, 4(1), 8.

[36] Melakessou, F., Kugener, P., Alnaffakh, N., Faye, S., & Khadraoui, D. (2020). Heterogeneous sensing data analysis for commercial waste

collection. Sensors, 20(4), 978.

[37] Nadeem, Q. M., Culmone, R., & Mostarda, L. (2017). Modeling temporal aspects of sensor data for MongoDB NoSQL database. Journal of Big

Data, 4(1), 1-35.

[38] Ouyang, H., Wei, H., Huang, Y., Li, H., & Pan, A. (2021). Verifying transactional consistency of mongodb. arXiv preprint arXiv:2111.14946.

[39] Pandey, R. (2020). Performance benchmarking and comparison of cloud-based databases MongoDB (NoSQL) vs MySQL (Relational) using

YCSB. Електронний ресурс].– Режим доступу: https://www. researchgate. net/publication/344047197_Performance_Benchma

rking_and_Comparison_of_Cloud-Based_Databases_MongoDB_NoSQL_Vs_MySQL_Relational_using_YCSB.

[40] Rahman, S. S., & Dekkati, S. (2022). Revolutionizing Commerce: The Dynamics and Future of E-Commerce Web Applications. Asian Journal of

Applied Science and Engineering, 11(1), 65-73.

[41] Rao, T. R., Mitra, P., Bhatt, R., & Goswami, A. (2019). The big data system, components, tools, and technologies: a survey. Knowledge and

Information Systems, 60, 1165-1245.

[42] Roozbeh, A., Soares, J., Maguire, G. Q., Wuhib, F., Padala, C., Mahloo, M., ... & Kostić, D. (2018). Software-defined “hardware” infrastructures: A

survey on enabling technologies and open research directions. IEEE Communications Surveys & Tutorials, 20(3), 2454-2485.

[43] Solat, S. (2023). Novel fault-tolerant, self-configurable, scalable, secure, decentralized, and high-performance distributed database replication

architecture using innovative sharding to enable the use of BFT consensus mechanisms in very large-scale networks (Doctoral dissertation, Paris

Cité University, France).

[44] Solat, S. (2023). Novel fault-tolerant, self-configurable, scalable, secure, decentralized, and high-performance distributed database replication

architecture using innovative sharding to enable the use of BFT consensus mechanisms in very large-scale networks (Doctoral dissertation, Paris

Cité University, France).

[45] Thapa, A. B. (2022). Optimizing MongoDB performance with indexing: practices of indexing in MongoDB.

[46] Tien, J. M. (2017). Internet of things, real-time decision making, and artificial intelligence. Annals of Data Science, 4, 149-178.

[47] Tonellotto, N., Macdonald, C., & Ounis, I. (2018). Efficient query processing for scalable web search. Foundations and Trends® in Information

Retrieval, 12(4-5), 319-500.

[48] Vieira, J. A. C., & de Sousa, B. (2023). Optimizing Traffic Mobility Simulations: a Study on Data Processing and Storage Methods.

[49] Zhouxiang, L. (2022). A history of competitive gaming. Routledge.

https://www.taylorfrancis.com/books/mono/10.4324/9781003095859/history-competitive-gaming-lu-zhouxiang

[50] Zimmermann, R., Mora, D., Cirqueira, D., Helfert, M., Bezbradica, M., Werth, D., ... & Auinger, A. (2023). Enhancing brick-and-mortar store

shopping experience with an augmented reality shopping assistant application using personalized recommendations and explainable artificial

intelligence. Journal of Research in Interactive Marketing, 17(2), 273-298.

https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://www.taylorfrancis.com/books/mono/10.4324/9781003095859/history-competitive-gaming-lu-zhouxiang

