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| ABSTRACT 

The rapid expansion of Electronic Health Records (EHRs), imaging modalities, and biomolecular data has created both 

opportunities and challenges for enhancing clinical diagnosis through Artificial Intelligence (AI). This study presents an integrative 

AI framework that utilizes multi-modal data fusion combining structured clinical data, medical imaging, and laboratory test results 

for the simultaneous diagnosis of multiple diseases within a real-world clinical environment. The proposed framework leverages 

deep learning models, including convolutional neural networks (CNNs) for image analysis and attention-based recurrent 

architectures for sequential clinical data, supported by feature-level fusion and decision-level ensemble strategies. Experiments 

were conducted on publicly available and institutional datasets, demonstrating superior performance in diagnostic accuracy, 

precision, and F1-score across conditions such as cardiovascular disease, diabetes, pneumonia, and lung cancer. The system is 

designed to support real-time clinical decision-making, while adhering to data privacy and fairness principles. This research 

highlights the potential of integrated AI solutions in streamlining multi-disease diagnosis and improving patient outcomes across 

diverse healthcare settings. 
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1. Introduction 

The integration of Artificial Intelligence (AI) into healthcare has transformed diagnostic practices by enabling rapid and accurate 

analysis of complex clinical data [1]. Traditional diagnosis often relies on isolated modalities, leading to delays or inaccuracies in 

detecting coexisting conditions [2]. Recent advancements in deep learning and data fusion techniques offer promising solutions 

for multi-disease diagnosis using diverse inputs such as Electronic Health Records (EHRs), medical imaging, and laboratory reports 

[3], [4]. This paper proposes an integrative AI framework designed to enhance clinical decision-making by simultaneously 

diagnosing multiple diseases in real-world healthcare environments [5]. 

1.1 Background and Motivation 

The exponential growth of medical data, including EHRs, imaging, and biosignals, has created new opportunities for improving 

healthcare through AI-driven solutions [1]. Despite the emergence of single-disease diagnostic systems, clinical reality often  
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involves patients with coexisting conditions, which demand integrative approaches [2]. AI offers the capability to analyze 

heterogeneous data sources simultaneously, providing a more comprehensive view of patient health [3]. This motivates the need 

for a unified framework that can leverage such capabilities to assist healthcare professionals in multi-disease diagnosis, thereby 

enhancing both accuracy and efficiency [4]. 

1.2 Problem Statement and Research Gap 

Most existing AI-based diagnostic systems are tailored for specific diseases and operate on a single data modality, limiting their 

effectiveness in real-world clinical scenarios where patients often present multiple symptoms and comorbidities [5]. Additionally, 

interoperability between different types of medical data—such as textual notes, radiological images, and structured lab reports 

remains underutilized. There is a lack of robust, interpretable, and integrative frameworks that support concurrent multi-disease 

diagnosis across diverse data types. This gap hinders the development of reliable clinical decision support systems for holistic 

patient care [6]. 

1.3 Objectives and Scope of the Study 

This study aims to develop an integrative AI framework capable of diagnosing multiple diseases simultaneously using multi-modal 

clinical data. The objectives include: Designing deep learning models to handle different data types (e.g., EHR, images, labs); 

Implementing data fusion techniques at both feature and decision levels; Evaluating the model across multiple disease categories 

using real-world datasets [54]. The scope is limited to common but clinically significant diseases such as diabetes, cardiovascular 

conditions, pneumonia, and lung cancer, with a focus on enhancing diagnostic performance in hospital settings [7]. 

1.4 Significance and Contributions 

This research makes several contributions: 

• Proposes a novel integrative AI framework for multi-disease diagnosis; 

• Demonstrates effective multi-modal fusion strategies combining EHR, imaging, and lab data; 

• Validates the framework on publicly available and institutional datasets with superior diagnostic accuracy; 

• Emphasizes interpretability and clinical applicability through explainable AI components. 

The framework supports real-time decision-making and can be a foundational tool for future clinical AI systems aimed 

at personalized and precision medicine [8], [9]. 

 

2. Literature Review 

Artificial Intelligence (AI) has seen increasing application in medical diagnosis, primarily focusing on single-disease classification 

tasks. For example, deep convolutional neural networks (CNNs) have been successfully applied to detect skin cancer, pneumonia, 

and diabetic retinopathy using medical images [10], [11]. However, such systems are often designed to work on isolated datasets 

with predefined disease labels, limiting their ability to diagnose patients with multiple coexisting conditions [12]. 

Recent efforts have explored multi-disease diagnostic systems. Rajpurkar et al. developed CheXNet, a 121-layer CNN trained on 

chest X-rays, capable of diagnosing 14 thoracic diseases [13]. While impressive, such models typically focus on a single data 

modality (e.g., images) and may fail to generalize in clinical settings where multiple data sources are essential. Researchers have 

emphasized the importance of integrating heterogeneous data including EHRs, lab reports, and imaging for accurate and robust 

diagnostic performance [14], [15]. 

Multi-modal learning strategies have emerged as a solution, combining different data types to enrich the feature space. For 

instance, Huang et al. proposed a fusion of imaging and clinical records for Alzheimer's diagnosis, showing improved performance 

compared to single-modality models [16]. Similarly, models using both temporal EHR data and radiology images have achieved 

significant gains in predictive tasks like sepsis detection and readmission risk [17]. 

Interpretability remains a critical challenge. While black-box models can achieve high accuracy, clinical deployment demands 

transparency. Explainable AI (XAI) techniques, such as attention mechanisms, Grad-CAM, and SHAP values, have been introduced 

to address this need [51, 52, 53]. These methods allow clinicians to understand model behavior and ensure that predictions align 

with medical knowledge [19]. 
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Despite these advancements, few studies have developed an end-to-end framework that supports real-time, multi-disease 

diagnosis using multi-modal clinical data in diverse hospital environments. This gap underscores the need for a unified AI-based 

solution, as proposed in this study [50]. 

2.1 AI in Single-Disease Diagnostic Systems 

Early AI applications in healthcare predominantly focused on single-disease detection using isolated data types. Esteva et al. 

developed a CNN model that matched dermatologist-level performance in skin cancer diagnosis using dermoscopic images [20]. 

Similarly, Kermany et al. demonstrated high accuracy in detecting pneumonia and other conditions from retinal and chest imaging 

using deep learning models [21]. However, these approaches are constrained by their single-modality design, which limits 

generalizability and prevents simultaneous identification of comorbid conditions [22]. 

2.2 Advances in Multi-Disease and Multi-Modal Diagnostic Models 

To address these limitations, recent work has focused on building AI systems that diagnose multiple diseases by leveraging diverse 

data sources. Rajpurkar et al. introduced CheXNet, a 121-layer DenseNet trained on chest X-rays to identify 14 different thoracic 

conditions [36]. While powerful, it is image-only and lacks context from patient history or labs. Multi-modal approaches—such as 

combining imaging with EHRs or laboratory data have shown improved diagnostic performance [24], [25]. Huang et al. fused 

imaging and clinical records to detect Alzheimer’s disease with higher accuracy than using either source alone [26]. However, 

challenges like temporal alignment, data standardization, and clinical interpretability still hinder their broader adoption [27]. 

2.3 Comparative Analysis of Existing Multi-Disease Diagnostic AI Models 

The table below highlights representative studies that incorporate AI for multi-disease diagnosis across various modalities and 

techniques. 

Table 1. Summary of Related Works in Multi-Disease Diagnosis Using AI 

Study Diseases Targeted AI Model Data Modalities 
Key Contribution 

 

Rajpurkar et al. 

(2017) [23] 

14 Thoracic 

Conditions 

DenseNet-121 Chest X-rays Radiologist-level image-based 

diagnosis 

Miotto et al. (2016) 

[24] 

Chronic Conditions Deep Representation 

Learning 

EHR Predictive modeling from patient 

history 

Huang et al. (2019) 

[26] 

Alzheimer’s Disease Multi-modal 3D-

CNN 

MRI + Clinical 

History 

Improved classification via 

fusion 

Harutyunyan et al. 

(2019) [25] 

Mortality, LOS, 

Sepsis 

LSTM + Multi-task 

Learning 

EHR Time Series Benchmarking on MIMIC-III 

dataset 

Shickel et al. (2018) 

[27] 

Various Review of Deep 

Learning Models 

EHR Survey of deep EHR-based 

diagnosis systems 

Lundberg & Lee 

(2017) [28] 

Multiple SHAP (Explainable 

AI) 

Model-agnostic Enhancing interpretability of 

model predictions 

 

These studies demonstrate the growing maturity of AI in supporting multi-disease diagnosis. However, few propose 

comprehensive, real-time frameworks that simultaneously process and integrate multi-modal data, interpret predictions, and 

support clinical decision-making in practice. This gap forms the foundation for the proposed study. 

 

 



An Integrative Artificial Intelligence Framework for the Diagnosis of Multiple Diseases in Clinical Settings 

Page | 648  

 

3. Methodology 

This section describes the design and implementation of the proposed integrative AI framework for multi-disease diagnosis in 

clinical settings. The framework is structured to handle heterogeneous healthcare data and generate real-time diagnostic outputs 

that support clinical decision-making. It consists of several core modules: data collection and preprocessing, feature extraction, 

multi-modal data fusion, classification, and explainability. Each module plays a critical role in ensuring that the system performs 

reliably and effectively in diverse clinical scenarios. 

3.1 Data Sources and Preprocessing 

The data used in this study includes structured EHRs, medical imaging, and laboratory results. Structured EHRs provide 

demographic information, diagnosis codes (ICD-10), clinical notes, and vitals. Imaging data such as chest X-rays and brain MRIs 

are included to support diagnosis of diseases like pneumonia and Alzheimer's. Laboratory records include sequential biomarker 

data, such as glucose, cholesterol, and creatinine levels. Before feeding this data into the models, thorough preprocessing is 

conducted. For EHRs, missing values are handled using mean imputation or k-nearest neighbors (KNN), categorical variables are 

encoded using one-hot encoding, and temporal alignment is applied to time-series records. Medical images are normalized, 

resized to 224×224 pixels, and augmented using rotation, zoom, and flipping techniques [32]. Laboratory data is standardized 

using z-score normalization, and irregular time intervals are handled through interpolation techniques. 

3.2 Feature Extraction Models 

Separate deep learning architectures are employed for each data modality to extract relevant features. For sequential EHR data, a 

Bidirectional Long Short-Term Memory (BiLSTM) network is used to capture both past and future temporal dependencies. Medical 

images are processed using DenseNet-121, a pre-trained convolutional neural network (CNN) fine-tuned for the target disease 

classes [33]. For laboratory data, a one-dimensional CNN is applied to extract patterns from time-series lab values. Each of these 

models outputs a dense feature vector summarizing the respective input. These vectors form the basis for multi-modal integration 

and downstream classification. 

3.3 Multi-Modal Data Fusion 

To leverage the complementary strengths of different data modalities, the framework applies both feature-level and decision-level 

fusion strategies. In feature-level fusion, feature vectors from EHRs, imaging, and lab data are concatenated and passed through 

a fully connected layer with dropout regularization to prevent overfitting. In decision-level fusion, each modality-specific model 

independently predicts disease probabilities, and these outputs are combined using a soft-voting ensemble or a meta-classifier 

such as XGBoost [29]. This dual-fusion approach enhances diagnostic robustness and allows the system to operate effectively even 

when one data type is unavailable. 

3.4 Multi-Disease Classification 

The integrated model performs multi-label classification to predict the presence or absence of multiple diseases concurrently. Each 

output neuron corresponds to one disease class and uses a sigmoid activation function to produce independent probabilities. The 

system is trained using the binary cross-entropy loss function, which is suitable for multi-label tasks where diseases may co-occur. 

This setup reflects real-world clinical scenarios and enables the model to make more holistic and accurate diagnostic predictions. 

3.5 Model Training and Evaluation 

Training is performed using the Adam optimizer with an initial learning rate of 0.0001 and a batch size of 32. To prevent overfitting, 

early stopping and 5-fold cross-validation are employed. The framework is evaluated on multiple benchmark datasets such as 

MIMIC-III, NIH ChestX-ray14, and ADNI, depending on the disease context. Model performance is assessed using metrics including 

accuracy, precision, recall, F1-score, and area under the ROC curve (AUC) for each disease class. These metrics provide a 

comprehensive understanding of the model’s diagnostic effectiveness across various conditions and patient cohorts. The final 

diagnostic output is a multi-label classification, where the model predicts the presence or absence of several diseases 

simultaneously. A sigmoid activation function is used in the final layer to accommodate the multi-label setup. The binary cross-

entropy loss function is optimized during training. 
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Let 𝑦𝑖 be the ground truth for disease 𝑖, and 𝑦�̂� the predicted probability. The loss function is defined as: 

ℒ = −∑[𝑦𝑖 log(𝑦�̂�) + (1 − 𝑦𝑖) log(1 − 𝑦�̂�)], (1)

𝑛

𝑖=1

 

3.6 Explainability and Interpretation 

To enhance clinical trust and model transparency, the framework incorporates explainable AI (XAI) techniques. Grad-CAM is used 

to generate heatmaps for imaging data, highlighting regions that contributed most to the diagnosis. In the BiLSTM model, 

attention mechanisms are used to identify critical time points and clinical events in EHR data. Additionally, SHAP (SHapley Additive 

exPlanations) values are computed to quantify the importance of each input feature across all modalities. These interpretability 

tools help clinicians validate model outputs and better understand the rationale behind each diagnostic decision. 

4. Results and Experimental Analysis 

This section presents the results obtained from experiments conducted using the proposed integrative AI framework. The 

evaluation focuses on diagnostic performance across multiple diseases using structured EHR, imaging, and laboratory data, both 

individually and in fused configurations. The experiments are designed to assess the effectiveness of each model component, the 

impact of multi-modal fusion, and the overall accuracy, reliability, and interpretability of the system. 

4.1 Experimental Setup 

The model is trained and evaluated on three major benchmark datasets: MIMIC-III (for cardiovascular and metabolic conditions 

using EHR and lab data), NIH ChestX-ray14 (for pulmonary conditions using chest radiographs), and ADNI (for Alzheimer’s 

detection using neuroimaging and clinical history). Each dataset is split into training (70%), validation (15%), and test (15%) subsets. 

The experiments are repeated using 5-fold cross-validation to ensure statistical robustness. 

4.2 Quantitative Results 

Table 2 presents the performance metrics for individual modality models and the integrated multi-modal model across four 

representative disease classes: pneumonia, diabetes, cardiovascular disease, and Alzheimer’s disease. 

Table 2: Performance Comparison of Single-Modality and Multi-Modal Models Across Disease Categories 

Disease Modality Accuracy Precision Recall F1-Score AUC 

Pneumonia Imaging 

(CNN) 

0.89 0.87 0.86 0.86 0.91 

Diabetes EHR (BiLSTM) 0.85 0.83 0.84 0.83 0.88 

Cardiovascular Labs + EHR 

(1D CNN + 

BiLSTM) 

0.87 0.85 0.86 0.85 0.89 

Alzheimer’s Imaging + 

Clinical 

0.88 0.86 0.85 0.85 0.90 

All Diseases Multi-Modal 

Fusion 

0.93 0.91 0.92 0.91 0.95 

 

As shown, the integrated model significantly outperforms each single-modality model, achieving an overall accuracy of 93% and 

an average F1-score of 0.91 across all diseases. The AUC scores also show substantial gains, indicating strong discriminative 

performance. The improvement is particularly notable in complex diagnostic cases such as comorbid diabetes and cardiovascular 

disease, where isolated data sources lack sufficient context. 
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4.3 Ablation Study 

To understand the contribution of each modality, we conduct an ablation study by incrementally removing each data type from 

the fusion model. The performance drops when any single modality is excluded, confirming that multi-modal fusion contributes 

significantly to the model's robustness and predictive power. Removing imaging data leads to a 4-5% drop in F1-score, while 

removing EHR or labs results in 3-4% and 2-3% drops, respectively. 

4.4 Interpretability Evaluation 

To assess model transparency, Grad-CAM heatmaps were generated for chest X-ray images, successfully localizing pneumonia-

affected regions aligned with radiologist annotations. Attention weights from the BiLSTM model highlighted critical EHR entries, 

such as hypertension and previous cardiac events, in cardiovascular patients. SHAP plots further revealed that age, glucose level, 

cholesterol, and abnormal imaging features were among the top contributors to model decisions. These findings reinforce clinical 

trust and support real-world usability. 

4.5 Comparative Benchmarking 

The proposed system is benchmarked against state-of-the-art methods for each individual dataset. On NIH ChestX-ray14, the 

multi-modal model surpasses CheXNet by 2.4% in AUC. On MIMIC-III, it outperforms Deep Patient embeddings by 3.6% in F1-

score. On ADNI, it achieves comparable results to ensemble-based Alzheimer’s classifiers while providing superior interpretability. 

 
Figure 1: Integrated Evaluation of Multi-Disease Diagnosis Using ROC, Grad-CAM, and SHAP Visualizations 

Figure 1 presents a comprehensive evaluation of the proposed AI framework for multi-disease diagnosis through three key 

visualization components: 
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• (a) ROC Curves: The Receiver Operating Characteristic (ROC) curves demonstrate the classification performance for four 

diseases: pneumonia, diabetes, cardiovascular disease, and Alzheimer’s. The Area Under the Curve (AUC) values range 

from 0.91 to 0.95, indicating high discriminative ability across all disease classes. 

• (b) Grad-CAM Heatmap: This panel shows a chest X-ray image overlaid with a Grad-CAM (Gradient-weighted Class 

Activation Mapping) heatmap, which highlights the region most influential in the model’s prediction for pneumonia. The 

red and yellow areas indicate high model attention, aligning well with radiologist-annotated pathology zones, thus 

increasing interpretability and clinical trust. 

• (c) SHAP Summary Plot: The SHAP (SHapley Additive exPlanations) plot visualizes the global feature importance for 

multi-modal inputs. Features like age, glucose level, cholesterol, and imaging-derived attributes have significant influence 

on the model’s output, with their SHAP values showing both positive and negative contributions depending on the 

individual patient profile. 

Together, these visualizations provide strong evidence of the model’s predictive accuracy, interpretability, and practical utility in 

clinical settings involving complex, multi-modal data. 

5. Discussion 

The experimental results presented in this study validate the effectiveness of the proposed integrative AI framework for multi-

disease diagnosis using multi-modal clinical data. As depicted in Figure 2, the model consistently demonstrates high performance 

across five key evaluation metrics Accuracy, Precision, Recall, F1-Score, and AUC across all disease categories. Notably, the multi-

modal model achieves the highest performance in the “All Diseases” category, with Accuracy and AUC reaching 0.93 and 0.95, 

respectively, underscoring the advantage of data integration in complex diagnostic scenarios. 

 
 

Figure 2: Comparative Performance Metrics Across Disease Categories Using the Proposed Multi-Modal AI Framework 

The disease-specific breakdown reveals that Pneumonia diagnosis via imaging achieves strong results (e.g., Accuracy = 0.89, AUC 

= 0.91), validating the use of fine-tuned CNN architectures on radiological data. However, diseases like Diabetes and Cardiovascular 

conditions, which rely heavily on structured EHR and lab data, show slightly lower individual modality performance. This variation 

highlights the modality-specific strengths and limitations. For instance, imaging may be less informative for metabolic disorders, 

while lab tests and EHRs are less sensitive to structural abnormalities captured in radiological images. The integrative model 

capitalizes on these complementary insights, effectively harmonizing them to deliver superior overall results, as seen in the unified 

performance metrics. 
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This observation aligns with existing literature, which increasingly supports the role of multi-modal AI in clinical environments. 

Studies like Miotto et al. [24] and Huang et al. [26, 27, 28] have emphasized that combining different data sources leads to more 

accurate and generalizable models. Our ablation study further reinforces this, showing consistent drops in performance when any 

single modality is excluded from the fusion model. The fusion model’s robustness and its capacity to handle real-world variability 

make it a promising candidate for deployment in clinical decision support systems (CDSS). In addition to strong predictive 

performance, the framework emphasizes interpretability. The ROC curves and SHAP value plots show both the strength and 

reasoning behind the model’s predictions, while the Grad-CAM heatmaps localize critical image regions for visual validation. 

Together, these tools offer transparency, a key requirement for building trust among clinicians and ensuring regulatory compliance 

in healthcare AI deployment. Despite these strengths, some challenges remain. Data heterogeneity and missing information 

common in real-world clinical systems can hinder performance. Although the model is designed to be fault-tolerant through 

decision-level fusion, future research should explore adaptive imputation strategies and transfer learning for more robust handling 

of incomplete datasets. Another limitation is the reliance on benchmark datasets that may not fully capture global population 

diversity. Expanding validation across international, multi-institutional datasets is a necessary next step [41, 42, 43, 44, 45, 46]. 

In conclusion, the proposed AI framework demonstrates the power of combining EHRs, medical imaging, and laboratory data for 

multi-disease diagnosis. It not only achieves superior performance metrics but also ensures model transparency critical for clinical 

adoption. The performance bar chart in Figure 3 visually confirms these strengths, making a compelling case for integrated AI 

solutions in modern healthcare. 

 
 

Figure 3: Diagnostic Insights: Model Interpretation Across Disease Categories 

This figure presents three diagnostic insights from the proposed multi-modal AI framework: (a) Feature importance scores showing 

the contribution of input features across four diseases; (b) attention weights learned from EHR sequences highlighting influential 

time-series events; and (c) results from an ablation study showing the drop in F1-score when specific data modalities are removed. 

Together, these visualizations underscore the importance of multi-modal data and interpretability in accurate and robust disease 

diagnosis. 

6. Conclusion 

This study proposed and validated an integrative artificial intelligence (AI) framework capable of diagnosing multiple diseases 

simultaneously by leveraging multi-modal clinical data, including Electronic Health Records (EHRs), medical imaging, and 

laboratory test results. The experimental results demonstrated that the proposed model outperforms single-modality systems in 

terms of accuracy, precision, recall, F1-score, and AUC, confirming the advantage of multi-modal data fusion. By combining 

advanced deep learning models such as BiLSTM, CNNs, and ensemble-based classifiers, the system effectively captures temporal, 

spatial, and structured information across different data sources. Furthermore, the incorporation of explainability techniques such 

as Grad-CAM, attention mechanisms, and SHAP values enhances transparency and clinical trust. The framework was tested on 

multiple benchmark datasets and achieved robust and interpretable diagnostic performance, demonstrating its potential as a 
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reliable clinical decision support system (CDSS). These findings emphasize the importance of holistic data utilization in AI-driven 

healthcare and support the ongoing shift toward precision medicine. 

7. Future Work 

To build on the current findings, several future directions are proposed. First, external validation should be conducted using real-

world hospital datasets from multiple institutions or countries to evaluate the framework’s generalizability across diverse patient 

populations and clinical protocols. Second, integration of the model into clinical workflows as a real-time decision support tool 

should be explored, including user interface development and latency optimization. Third, expanding the model to incorporate 

additional data modalities such as genomic profiles, wearable sensor data, and pathology reports can further improve diagnostic 

depth and personalization. Fourth, federated learning techniques can be employed to enable privacy-preserving, decentralized 

model training across institutions without compromising sensitive patient data, in compliance with HIPAA and GDPR regulations. 

Lastly, comprehensive fairness and bias audits should be performed to ensure that the model’s predictions are equitable across 

different demographic subgroups. These future directions will not only enhance the model’s scalability and reliability but also 

ensure ethical and effective deployment in real-world healthcare settings. 
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