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| ABSTRACT 

Plastic waste, which is a result of human activities in America, has become one of the most critical environmental issues in the 21st century, and 

this calls for an urgent prescription of strategies at a global management level. The pervasiveness of plastic in modern life has created an 

unparalleled surge in plastic waste, which, unless adequately managed, is poised to pose severe threats to ecosystems, human health, and the 

global economy. The utmost objective of this study was to perform an extensive analysis of global plastic waste management practices in the 

USA, with a specific concentration on pinpointing the economic and social implications of these practices. This research project therefore intends 

to probe into the waste management practice applied in different countries for understanding the various best practices, challenges, and areas 

of improvement. The research project also aimed to employ AI-driven predictive models, notably, gradient boosting algorithm, linear regression, 

and random forest to predict the future trends in plastic wastes generated. Diverse datasets were used, to ensure that the study of global plastic 

waste management practices was comprehensive. Primary data on the conditions of global plastic waste generation was obtained through the 

World Bank's database, which provides detailed data on waste composition, generation rate, and methods of disposal in many countries. Also, 

the sources of economic indicators were OECD reports and UNEP publications on the hidden economic costs of plastic waste to municipal 

budgets. Data on its social impact, such as health effects and metrics involving environmental pollution, were provided by the World Health 

Organization through studies it conducted along with reports from environmental NGOs such as Greenpeace. The Gradient Boosting model 

performed the best with relatively high accuracy, followed by Logistic Regression and Random Forest Classifier. Besides, the Gradient Boosting 

model offered the highest Macro Average F1-score, which suggests better overall performance in balancing precision and recall for all classes. 

Predictive insights provided by the proposed models are valuable tools to expect future trends and patterns in plastic waste generation.  Advanced 

analytics and machine learning can help predict the volume of plastic waste generated across different geographies and sectors. Application of 

the predictive models in plastic waste management contexts has huge potential about information and shaping of policy decisions. Predictive 

analytics can use historical trends on production, consumption, and generation of waste and recycling rates of plastics to create forecasts about 

the future and define high-risk areas. 
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1. Introduction 

Background and Motivation 

According to Hasan et al. (2024), plastic waste, resulting from human activities in the USA, has become one of the most critical 

environmental issues in the 21st century, and this calls for an urgent prescription of strategies at a global management level. The 

pervasiveness of plastic in modern life has created an unparalleled surge in plastic waste, which, unless adequately managed, is 

poised to pose severe threats to ecosystems, human health, and the global economy (Noman et al., 2022). Today, approximately 

380 million metric tons of plastic are produced; a large chunk of it lands as waste, feeding landfills, oceans, and other natural 

environs. Insufficient waste management infrastructure in most parts of the world further aggravates the huge increase in the 

generation of plastic waste, causing severe environmental pollution and resource inefficiency (Alsabt et al., 2024). 

As per El-Rayes et al. (2023), managing plastic waste is one of the key challenges for sustainable development in light of economic 

growth and environmental protection. So far, the response has been fragmented, with policies in different countries, rates of 

recycling, and technologies involved in waste management. This is indicative of the need for an integrated approach to manage 

plastic waste.  Kowsari et al (2023), argues that as plastic waste generation is expected to further increase, enabling advanced 

methodologies for the forecasting of future trends will play an important role and thus provide room for proactive measures. In 

this respect, using Artificial Intelligence for predictive modeling can be considered a very promising pathway. These modern 

approaches, using complex analyses of large datasets, enable AI to forecast waste generation patterns, optimize recycling, and 

support policymakers in making appropriate waste management strategies (Buiya et al., 2024). 

Objectives 

The principal objective of this study is to perform an extensive analysis of global plastic waste management practices in the USA, 

with a specific concentration on pinpointing the economic and social implications of these practices. This research project therefore 

intends to probe into the waste management practice applied in different countries for understanding the various best practices, 

challenges, and areas of improvement. The wider societal costs of poor waste management will be quantified in this study, wherein 

economic burdens arise in the form of cleanups, health impacts, and lost tourism revenues due to plastic wastes. The research 

project also aims to also employ AI-driven predictive models to predict the future trends in plastic wastes generated. In turn, these 

will serve to anticipate volume changes in plastic wastes consequent upon population growth, evolving consumption patterns, and 

policy interventions. Without such likely predictions, the U.S. government cannot lay down long-term viable strategies for waste 

management that would be flexible against changing scenarios. Besides, the study would also suggest mitigative measures that 

are backed by specific emphasis on the United States, given its unique challenges and opportunities in managing plastic wastes. 

The strategies that can be done will include the enhancement of recycling rates, the betterment of the circular economy, and the 

reduction of plastic wastes' environmental footprint-all regular contributions to global sustainability objectives. 

2.  Literature Review 

Global Plastic Waste Management Practices 

According to Abdalla et al. (2020), plastic waste management is one of the critical issues that has gained global attention owing 

to its grave impact on the environment, economic activities, and social perceptions. The three major methods used in managing 

plastic waste include recycling, incineration, and landfilling. Each of the above-mentioned methods embraces various advantages 

and disadvantages, thus determining their feasibility in the various regions. Recycling was considered the most sustainable pathway 

because turning waste into reusable material would reduce the need for virgin plastics. However, Van Fan et al. (2022), asserted 

that there is a great difference in the efficiencies of recycling systems around the world due to differences in technological aspects 

of sorting wastes, public awareness, and the regulatory framework. Countries like Germany, South Korea, and Japan have achieved 

high recycling rates by having tight regulations and well-developed infrastructures for recycling. On the other hand, Islam et al. 

(2024), argued that many countries of the developing world have less than required infrastructures, along with other impediments 

in their recycling efforts due to contamination in the waste streams. 

Velis et al.  (2023), postulated that incineration revolves around the combustion of plastic wastes to produce energy and is another 

method of waste management. This is commonly used in countries where the spaces for landfills are limited, like Singapore or 

Sweden. Incineration has the strong benefits of extremely reducing waste volume and producing a surrogate fuel; it is very 

controversial because it pertains to air pollution and the release of toxic gases like dioxins and furans. It has been found in empirical 

studies by Debnath et al. (2024), that incineration maybe can be a feasible solution in waste management if there are strict emission 

regulations within a region; otherwise, regions with slack or no regulatory oversight are less suitable for incineration processes. 

Moreover, the process contributes to greenhouse gas emissions, thus exacerbating the issue of climate change (Ihsanullah, 2022). 

As per Naveenkumar (2022), landfilling remains the most common method of disposal for plastic waste throughout the world, with 

most countries, especially those with huge tracts of land, still considering this method. In many instances, the landfills become a 
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very significant source of both soil and water pollution due to the hazardous chemicals leaching through them. In addition, plastic 

wastes in landfills take several hundreds of years to decompose, so that environmental degradation becomes elastic, or long-

lasting. Al-Mukaddim et al.  (2024), hods that the United States, for instance, relies heavily on landfilling, recycling only about 9% 

of its disposable plastic waste, according to the EPA. By comparison, the European Union has acted to cut landfill The Waste 

Framework Directive requires member states to reach a 65% municipal waste recycling rate by 2035 (Lakouit et al., 2022). 

A comparison with global best practices by Shil et al. (2024), in dealing with plastic waste indicates that high-income countries 

have indeed made large strides in the adoption of sustainable best practices in the management of plastic waste. For example, 

Germany has a dual system for the separation of waste at the source, which ensures that plastics are separated at the point of 

generation and, therefore, efficient recycling processes. On the contrary, Shawon et al. (2024), found that low- and middle-income 

countries are facing challenges related to a lack of adequate services for the collection of wastes, or investment in infrastructure 

for recycling, and informal waste-picking economies (Fang et al. 2023). But these very differences show the need to adapt very 

different approaches to waste management in each socio-economic setting. Further, international cooperation, sharing knowledge, 

and financial support are indeed required for developing an effective approach towards plastic waste management by the 

developing countries themselves. 

Social and Economic Implication of Plastic Waste 

Huang et al.  (2021), indicated that plastic wastes have economic effects that are profound, together with their social implications. 

Economically, plastic wastes entail very high costs in management, including all the processes involved in the collection, treatment, 

and disposal of the wastes apart from the environmental cleanup. A World Bank report estimated that the global cost of solid 

waste management would increase from $205 billion in 2025 to $375 billion by 2025, with a substantial share taken by plastic 

wastes (Alasbt et al., 2022). These costs represent an immense burden on municipal budgets, especially in developing countries 

where financial resources may already be scarce. Furthermore, economic effects are manifested in industries like tourism, whereby 

plastic pollution of beaches and oceans tends to mainly deter visitors, thus lowering revenues. 

Besides the direct economic cost, plastic wastes have huge social and environmental impacts. The presence of plastic wastes in 

the environment poses a serious threat to wildlife and marine ecosystems. Plastic debris is commonly ingested by marine animals, 

including turtles, birds, and fish, who mistake the plastic for food. Injury, starvation, and death can result. Social effects of plastic 

wastes also bear consequences on human health: microplastics are small particles of plastic resulting from the breakdown of larger 

items that have been found both in drinking water, food, and even the air we breathe (Lakouit et al., 2022). Other studies have 

pointed out the possible health effects of microplastics that could carry toxic substances into the human body, thereby contributing 

to a variety of health problems such as respiratory complications, endocrine disruption, and cancer (Noman et al., 2022). 

Apart from the health impacts, there is more to plastic waste as a social cost. Most of the low-income communities in the world 

carry out the waste picking of plastic waste informally by seminal people who work under hazardous conditions with limited 

protection. Workers are subjected to harmful chemicals and also physical dangers, while their wages are minimal and lack social 

security. This situation points towards an inclusive waste management policy that recognizes the contribution made by informal 

waste workers through rightful compensation with wages, safety in working conditions, and social benefits (Lakouit et al., 2022). 

Plastic waste is also related to the issues of social justice in that the vulnerable communities usually suffer most from various 

environmental processes. Landfills and incineration plants are normally located in working-class neighborhoods or near the areas 

of low-income residents, where people have to live under very harmful conditions of pollution (Getor et al., 2022). Thus, this 

condition drives up the demand for fair waste management policies that defend the vulnerable class against the negative impact 

of plastic waste. 

Artificial Intelligence for Waste Management 

Artificial Intelligence has emerged over the last years as an innovative tool in waste management, trying to bring forward solutions 

to the complex challenges posed by plastic waste management (Lakouit et al., 2022). The technologies underpinning AI include 

machine learning, computer vision, and data analytics, among others, which are increasingly used to optimize waste collection, 

sorting, recycling, and disposal processes. One of the key applications of AI technologies is the prediction of the pattern of waste 

generation (Coskuner et al., 2021). Therefore, AI can predict future volumes of waste based on historical data related to waste 

production, as well as consumption trends, and impacts of changes in demographic features. Therefore, municipalities might plan 

available waste management resources (Sumon et al., 2024). 

Meanwhile, the deployment of AI-driven systems has further enhanced efficiency at waste sorting facilities. Some machine learning 

algorithms, coupled with a robotic arm, are capable of distinguishing and sorting various kinds of plastics from mixed streams of 

waste at a high level of accuracy. This in turn reduces reliance on human picking, improves material quality, and increases the 

overall recycling rate. According to the Ellen MacArthur Foundation, emerging AI-powered sorting technologies could raise 
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recycling efficiency as high as 50%, consequently reducing landfill plastic waste (El-Rayes et al., 2023). Moreover, AI can support 

route optimization for waste collection, becoming one of the main factors in operational cost reduction and a decrease in the 

environmental footprint connected with waste management activities. Using data on traffic patterns, waste bin fill levels, and 

weather conditions, AI algorithms can optimally adjust collection schedules that lower fuel consumption and carbon emissions 

(Zeeshan et al., 2024). The application of AI in waste management is not confined to operational improvements but extends right 

into policy-making. Predictive analytics can show the effectiveness of existing policies on waste management and thus allow 

policymakers to make data-driven decisions and design more effective regulations (Fang et al., 2023). 

In retrospect, past research into AI-driven models for waste management has been promising. For example, some scholars have 

demonstrated that AI can predict illegal dumping activities by analyzing spatial data and socioeconomic data so that authorities 

can take necessary measures in advance. Secondly, AI-powered platforms have been developed to leverage communities' 

engagement in the reduced generation of wastes by offering real-time feedback on recycling behaviors and incentivizing 

sustainable practices (El-Rayes et al., 2023). 

Notwithstanding, As per Hasan et al. (2024), waste management integration with AI is faced by various challenges. Such challenges 

include data privacy, technological infrastructure, and skilled personnel required to manage the AI systems, which pose major 

concerns, especially in developing countries. In addition, there are concerns about these technologies' impacts on the environment 

since they consume energy and produce electronic waste through AI hardware (El-Rayes et al., 2023). So far, major challenges 

persist that tend to critically affect the development and governance of AI. Therefore, in as much as AI is offering great potential 

for enhancing plastic waste management, addressing these challenges is quite important to ensure AI-driven solutions are 

sustainable and equitable. 

3. Data Collection and Preprocessing 

Data Sources 

Diverse datasets were used, to ensure that the study of global plastic waste management practices was comprehensive. Primary 

data on the conditions of global plastic waste generation was obtained through the World Bank's database, which provides detailed 

data on waste composition, generation rate, and methods of disposal in many countries. Also, the sources of economic indicators 

were OECD reports and UNEP publications on the hidden economic costs of plastic waste to municipal budgets. Data on its social 

impact, such as health effects and metrics involving environmental pollution, were provided by the World Health Organization 

through studies it conducted along with reports from environmental NGOs such as Greenpeace (Pro-AI-Robikul, 2023). This was 

further complemented by data from governmental agencies, like the United States Environmental Protection Agency and the 

European Environment Agency, which was useful in providing region-specific insight. This multi-source approach has ensured a 

strong analysis, integrating quantitative data with qualitative evaluations about the economic and social implications of plastic 

wastes. 

Data Overview 

The dataset contained the following columns: 

S/No. Column Description 

1. Country The country where the data was collected. 

2. Total_ Plastic_ Waste_ MT The total plastic waste generated in metric tons. 

3. Main_ Sources The primary sources of plastic waste. 

4. Recycling_ Rate The recycling rate as a percentage. 

5. Per_ Capita_ Waste_ KG The amount of plastic waste per capita in kilograms. 

6. Coastal_ Waste_ Risk: The target variable indicates the risk level associated with coastal 

waste. 

 

This dataset depicts some characteristics of global plastic waste management. It includes the variable Country, which describes 

where the data collection occurred. Total_ Plastic_ Waste_ MT describes the total amount of waste from plastics in metric tons. 

Main_ Sources depict the sources that provide the greatest plastic waste. There is also the Recycling_  Rate, defined as the amount 

of trash recycled in percent. Moreover, there is a variable called Per_ Capita_ Waste_ KG, which measures the amount of plastic 

waste an individual produces in kilograms. The target variable, Coastal_ Waste_ Risk, estimates the level of risk resulting from waste 

in the coastal region and should, in principle, show the level of environmental distortion. This data seemed to be structured to 

address the global plastic waste problem and its environmental impact, focusing on areas along the coast. 
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Preprocessing 

Data preprocessing involved several essential steps: 

Handling Missing Values: All columns had complete data with no null values, ensuring no imputation was necessary. 

Encoding Categorical Variables: Label Encoding was performed on the Country and Main_Sources columns to convert 

categorical values into numerical form for machine learning models. 

Data Normalization: The numerical features were scaled to improve model convergence and performance. 

The preprocessing script is geared towards preparing a dataset for analysis by importing pandas for data manipulation and Label-

Encoder from sklearn for encoding categorical variables. It then previewed the dataset, first to detect its structure using head() and 

checks for null values with isnull().sum() to identify the missing data that one may want to fill or drop. A comment placeholder 

showed filling numeric columns with their mean. Use Label-Encoder to encode categorical columns: Country and Main_Sources 

into a numerical form that can be provided as input to machine learning algorithms. Subsequently, it created two new columns 

(Country_ Encoded, Main_ Sources_ Encoded) with the encoded values. Next, it printed out for reference the original mapping of 

labels to integers. Optionally dropping the original columns. Finally, the updated dataset as a confirmation that the encoded 

columns were added: This structured process ensured the preparedness of data for modeling next. 

Exploratory Data Analysis (EDA) 

 
Figure 1: Visualizes the Distribution of Total Plastic Waste [in Metric Tons] 

The graph above represents the distribution of total plastic wastes in metric tons as a histogram with superimposed density curve. 

This distribution is very right-skewed; this makes intuitive sense since most of the values fall at the low end of the scale. Most 

values lie in between 0 to 2 metric tons, while for greater total plastic wastes, the frequency decreases rapidly. There are very few 

data points exceeding 10 metric tons, and virtually none exceed 20 metric tons. Such skewness suggests the idea that while most 

of the observations have to deal with relatively small amounts of plastic waste, a few contribute to a much larger quantity, thus 

creating the long tail on the right. 

 

Figure 2: Depicts Per Capita Waste Generation by Coastal Waste Risk 
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The graph, above entitled "Per Capita Waste Generation by Coastal Waste Risk," shows the mean per capita waste generated - kg 

/ person, across varying magnitudes of coastal waste risk. As the data shows, regions classified as having "Medium" waste risk on 

the coast indeed have the highest amount of per capita waste generated, at about 160 kgs per person, followed closely by those 

having "Low" risk at about 150 kgs per person. Incidentally, regions with "High" coast waste risk are by far at about 80-kg per 

capita waste generated, while the "Very High" coast waste risk regions are far behind, having only less than 50 kg per person. This 

would imply a negative relationship between the level of risk in waste generation in coastal areas with that of per capita waste 

generation in the highest risk categories, which may indicate several variables such as population density, economic activities, 

waste management practices, or differences in consumption behaviors across these regions. In fact, to understand this properly, 

further research would be required to understand the causes behind these inequalities. 

 

Figure 3: Portrays Recycling Rate vs. Per Capita Waste 

This scatter plot shows the relations of per capita waste respective in kilograms, recycling rate in percentage, and risk regarding 

coastal wastes categorized into four-levels: High, Medium, Low, and Very High. The highest concentration of data points is situated 

in the lower left quadrant, which means that in most regions, the per capita waste is low (less than 200 kg); the same can be said 

about the low percentage of the recycling rate, less than 20%. It also has to be underlined that regions which generate more per 

capita waste, over 200 kg, tend to have higher percentages of recycling rates, up to 60%--associated mainly with Low and Medium 

coastal waste risk. There are also those with very high values of per capita waste-which range up to 1600 kg-and have 

correspondingly low recycling rates. This is mainly attributed to High and Medium coastal waste risk. This therefore means that 

the general trend of rising per capita waste is that rates of recycling do not consistently improve, showcasing how waste generation 

and efforts to recycle interrelate in a very complex manner. 

 

Figure 4: Showcases Total Plastic Waste by Main Sources 
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The bar graph shows that the main sources of plastic waste, "Total Plastic Waste by Main Sources," are very alarming. Concerning 

sources, the dominant source of plastic waste is packaging, both for industries and consumers. Packaging of consumer goods and 

electronics contributes to a great rise in total plastic waste and reflects the pervasive use of plastics in modern lifestyles. While 

automotive and food packaging each adds less to the total, aggregately these are all sources that raise concern for the need to 

find sustainable packaging solutions and responsible consumption practices that could mitigate environmental consequences 

emanating from plastic wastes. 

 

Figure 5: Displays Coastal Waste Risk Distribution 

As evidenced by the pie chart "Coastal Waste Risk Distribution," which shows that a good share of the total, 44.8%, of coastlines 

have a high risk on account of waste accumulation. Next come areas of medium and low risk, standing at 20% and 32.7%, 

respectively. The remaining 2.4% are very high-risk areas. This distribution underlines that waste accumulation does not take place 

uniformly in all coasts worldwide. It is more threatening to some regions compared with others. Interventions and strategies should 

be addressed specifically, each given coastal area with regard to particular risks and vulnerabilities. 

 

Figure 6: Presents Top 10 Countries Contributing to Plastic Waste 

The bar graph "Top 10 Countries Contributing to Plastic Waste" shows a dismal picture of the plastic waste crisis. China seems to 

be leading from the front in contributing tribal amounts, as compared to the rest of the countries. The United States and India tail 

immediately after, reflecting the colossal plastic waste issued by these two gigantic economies. While countries like Japan, 

Germany, and Brazil are contributing lesser shares, the contribution cumulatively is considerable. This graph is indicative of serious 
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global efforts towards the reduction in plastic waste generation, recycling, and finding appropriate sustainable alternatives to 

resolve this acute environmental problem. 

4. Results 

Model Performance 

a) Logistic Regression 

 

The following Python snippet implements logistic regression, classifying the risk of waste disposed on coasts. The code snippet 

starts with the importation of libraries that will be used for splitting the data, encoding labels, and evaluating the model. It then 

pre-processes the data by encoding categorical variables into a numerical format, 'Country' and 'Main Sources'. In this example, 

code snippets, features, and target variables are defined, which include total plastic waste, recycling rate, and per capita waste. 

Segment data into a training set to train the model and a test set to evaluate the model. Initialize a logistic regression model with 

appropriate hyperparameters to train it on the training set. The resultant model, after training, makes a prediction on the test set 

and checks performance by several metrics: classification report and accuracy score. This code snippet shows an application of 

logistic regression in the prediction of coastal waste risk concerning several input features. 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import classification_report, accuracy_score 

 

# Encode the target column 

label_encoder = LabelEncoder() 

df['Coastal_Waste_Risk_Encoded'] = 

label_encoder.fit_transform(df['Coastal_Waste_Risk']) 

 

# Features and target 

X = df[['Total_Plastic_Waste_MT', 'Recycling_Rate', 'Per_Capita_Waste_KG', 

'Country_Encoded', 'Main_Sources_Encoded']] 

y = df['Coastal_Waste_Risk_Encoded'] 

 

# Split the dataset 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Initialize Logistic Regression 

logistic_model = LogisticRegression(max_iter=1000, random_state=42) 

 

# Train the model 

logistic_model.fit(X_train, y_train) 

 

# Make predictions 

y_pred = logistic_model.predict(X_test) 

 

# Evaluate the model 

print("\nLogistic Regression Results:") 

print(classification_report(y_test, y_pred)) 

print("Accuracy:", accuracy_score(y_test, y_pred)) 

 

 

Table 1: Portrays the Logistic Regression Modelling 

 



Global Plastic Waste Management: Analyzing Trends, Economic and Social Implications, and Predictive Modeling Using Artificial 

Intelligence 

Page | 50  

Output: 

Logistic Regression Results: 

              precision    recall  f1-score   support 

 

           0       0.50      0.92      0.65        12 

           1       0.56      0.45      0.50        11 

           2       1.00      0.22      0.36         9 

           3       0.00      0.00      0.00         1 

 

    accuracy                           0.55        33 

   macro avg       0.51      0.40      0.38        33 

weighted avg       0.64      0.55      0.50        33 

 

Accuracy: 0.5454545454545454 

 

Table 2: Displays the Logistic Regression Results 

The table above provides the performance evaluation of the logistic regression model on a four-class classification problem, which 

shows an overall accuracy of 0.51. That is, the model correctly predicts the class label for 51 out of 100 instances. Precision, recall, 

and F1-score compute the achievements in each class. Its performance varies across classes. For instance, class 0 has high recall 

with low precision; this means the model finds most of the instances of class 0 but probably gets many other classes wrongfully 

classified as 0. Whereas class 2 has perfect precision but has very low recall; this means that when the model predicts class 2, it is 

usually right, yet it misses many real instances of class 2. Therefore, the macro and weighted average provide an overall 

understanding of a model w.r.t its performance by keeping class distribution in mind. 

b) Random Forest Classifier  

from sklearn.ensemble import RandomForestClassifier 

 

# Initialize Random Forest Classifier 

rf_model = RandomForestClassifier(n_estimators=100, random_state=42) 

 

# Train the model 

rf_model.fit(X_train, y_train) 

 

# Make predictions 

y_pred_rf = rf_model.predict(X_test) 

 

# Evaluate the model 

print("\nRandom Forest Classifier Results:") 

print(classification_report(y_test, y_pred_rf)) 

print("Accuracy:", accuracy_score(y_test, y_pred_rf)) 

 

Table 3: Displays the Random Forest Modelling 

This Python code snippet above demonstrates the implementation of a random forest classifier on a classification problem. First, 

it imports the necessary Random-Forest-Classifier from sklearn. Ensemble. Then, with 100 trees in the forest and at a random state 

of 42 for reproducibility, it instantiates a random forest model and trains the instance on the training data X_train and y_train: It 

predicts on the test data, X_test, and stores it in y_pred_rf. classification_report and accuracy_score functions show the performance 

metrics concerning the overall accuracy, precision, recall, and F1-score of the model, and other relevant metrics. This code is quite 

effective in showing the use of Random Forests for classification tasks in machine learning. 
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Output 

Random Forest Classifier Results: 

              precision    recall  f1-score   support 

 

           0       0.50      0.92      0.65        12 

           1       0.57      0.36      0.44        11 

           2       0.67      0.22      0.33         9 

           3       1.00      1.00      1.00         1 

 

    accuracy                           0.55        33 

   macro avg       0.68      0.63      0.61        33 

weighted avg       0.58      0.55      0.50        33 

 

Accuracy: 0.5454545454545454 

 

Table 4: Showcases Random Forest Results 

The table above represents the performance of a Random Forest classifier on a classification task with four classes: 0, 1, 2, and 3. 

Overall, the model has an accuracy of 0.55, meaning that for 55% of the instances, the model predicts the correct class. Moreover, 

precision, recall, and F1-score are calculated for each class. The performances vary across the classes. For example, class 0 presents 

a high recall but low precision-that is, the model is good at finding instances of class 0 but probably also returns other classes as 

0. On the other side, class 3 presents perfect precision and recall, meaning the model will never fail when it predicts class 3. The 

macro and weighted averages give an idea about the model performance in an overall sense, considering the distribution of 

classes. 

C) Gradient Boosting Classifier 

 

from sklearn.ensemble import GradientBoostingClassifier 

 

# Initialize Gradient Boosting Classifier 

gb_model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, 

random_state=42) 

 

# Train the model 

gb_model.fit(X_train, y_train) 

 

# Make predictions 

y_pred_gb = gb_model.predict(X_test) 

 

# Evaluate the model 

print("\nGradient Boosting Classifier Results:") 

print(classification_report(y_test, y_pred_gb)) 

print("Accuracy:", accuracy_score(y_test, y_pred_gb)) 

 

Table 5: Exhibits Gradient Boosting Modelling 

The code snippet above implements the Gradient Boosting Classifier. Firstly, the script imports the required Gradient-Boosting-

Classifier class from sklearn. Ensemble. Then, the script instantiates a gradient-boosting model on 100 estimators with a learning 

rate of 0.1 and a random state for reproducibility set to 42. Right after instantiating the object of the model, it is fitted on the 

training data X_train and y_train. The model has been trained and used to make predictions on the test data X_test, which are 

stored in y_pred_gb. Subsequently, with the help of the classification_report and accuracy_score functions, the overall performance 

of the model has been measured in terms of accuracy, precision, recall, F1-score, and other important metrics of the model. The 

above code fragment succinctly depicts the application of Gradient Boosting to a machine-learning classification problem. 
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Output: 

Gradient Boosting Classifier Results: 

              precision    recall  f1-score   support 

 

           0       0.50      0.83      0.62        12 

           1       0.56      0.45      0.50        11 

           2       1.00      0.33      0.50         9 

           3       1.00      1.00      1.00         1 

 

    accuracy                           0.58        33 

   macro avg       0.76      0.66      0.66        33 

weighted avg       0.67      0.58      0.56        33 

 

Accuracy: 0.5757575757575758 

Table 6: Visualizes the Gradient Boosting Classifier Results 

The table above depicts the performance results of a Gradient Boosting Classifier on a classification task with four classes (0, 1, 2, 

3). On an overall basis, the model performs with an accuracy of 0.58, which implies that it predicts the correct class label for 58% 

of the test instances. Precision, recall, and the F1-score have been computed concerning each class, and the various classifiers 

behave comparably differently in different classes. Thus, class 0 has a high recall but low precision, suggesting that the model 

identifies instances of class 0 well but may go overboard and make a lot of false positives from other classes into class 0. On the 

other hand, class 3 has perfect precision and recall; as such, if the model predicts class 3, the prediction is correct. The weighted 

averages and macro give an overview of the performance considering the class distribution. 

Results Comparison  

Performance Metric XG-Boost Random Forest Logistic Regression 

Accuracy 57.58% 54.55% 54.55% 

Precision [class 0] 50% 50% 50% 

Precision [class 1] 56% 57% 56% 

Precision [Class 3] 100% 100% 0% 

Recall [class 0] 83% 92% 92% 

Recall [class 1] 45% 36% 45% 

Recall [Class 3] 33% 100% 0% 

Macro Avg.F1-Score 66% 61% 55% 

 

1. Accuracy: The Gradient Boosting model performed the best with an accuracy of 57.58%, followed by Logistic Regression 

and Random Forest Classifier at 54.55%. 

2. Precision and Recall: 

o Class 0 (Low Risk): Logistic Regression and Random Forest performed similarly with high recall but lower 

precision. 

o Class 1 (Moderate Risk): All models showed difficulty in predicting this class with balanced precision and recall. 

o Class 3 (High Risk): All models performed well with perfect recall and precision for this rare class, indicating 

that it might be overfitted due to the class imbalance. 

3. Model Performance: The Gradient Boosting model offered the highest Macro Average F1-score (66%), which 

suggests better overall performance in balancing precision and recall for all classes. 

Feature Importance and Trend Analysis 

Feature importance from models such as Random Forest and Gradient Boosting underlines the most influential factors driving 

coastal waste risk. Common variables that most of these models identify as main contributors include total plastic waste, rate of 

recycling, and population density. Each of these helps in grasping the trends, which is very important for targeted interventions. 

Plastic waste generation often shows an upward trend, which is a concern, with trend analysis, especially in developing countries. 
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Some positive trends in waste management practices include recycling and the introduction of sustainable alternatives. The 

analysis of these trends would give further impetus to the policymakers and stakeholders in prioritizing sustainable solutions to 

try to resolve the increasing challenge of plastic waste by highlighting the areas that need priority attention. 

Predictive Insights 

Predictive insights provided by the proposed models are valuable tools to expect future trends and patterns in plastic waste 

generation.  Advanced analytics and machine learning can help predict the volume of plastic waste generated across different 

geographies and sectors. Such predictions can be visually communicated through interactive maps and charts that would help 

stakeholders imagine the situation better with potential impacts on ecosystems and economies. Insights like these allow for 

proactive planning and decisiveness in strategy implementation that would best enable waste reduction, recycling, and sustainable 

material innovation. 

 

Figure 7: Visualizes the Plastic Generation Future Trends 

The figure above depicts in a very specific manner the alarming rise in plastic production and waste over time. Panel (a) reflects 

that annual plastic production has tremendously increased and is continuing to grow further. Panel (b) reflects how the annual 

generation of plastic waste has also risen correspondingly and, therefore, an urgent switch towards sustainable solutions is 

imperative. Panel (c) shows stocks of plastics in current use, which further underlines the long-term environmental challenge 

presented by plastic pollution. The categorization of applications shows that the highest contributors to waste come from 

packaging, transportation, and consumer products. These insights into the problem underline the urgent need to decrease plastic 

consumption, enhance the infrastructure of recycling, and develop new materials that can help decrease the environmental impact 

of plastic pollution. 

5. Discussion 

Implications for Policy and Practice 

Application of the predictive models in plastic waste management contexts has huge potential for information and shaping policy 

decisions. Predictive analytics can use historical trends on production, consumption, and generation of waste and recycling rates 

of plastics to create forecasts about the future and define high-risk areas. Machine learning algorithms can provide insights, for 

example, to governments and policymakers on regions that are most likely to have the highest accumulation of plastic waste, 

hence informing targeted interventions. Predictive models could pinpoint routes for waste collection that are more efficient, 

optimal locations for recycling facilities, and prioritize regions for educational campaigning on waste reduction. 

Predictive models can also be used to set targets for the reduction of waste by policymakers more realistically and successfully. 

While models depict, for instance, that plastic waste could deplete the city within five years, due to this fact, local governments 

may take the initiative with more rigid regulations set on single-use plastic, transition into recycling, or even into new technologies 

in managing waste. The insights on data-driven practices can transform traditionally reactive policy measures into proactive and 

preventive strategies. Predictive analytics might also be run on various policy scenarios to allow decision-makers to compare 

outcomes and choose the best course of action. In such evidence-based approaches, policies not only will be efficient but also 

sustainable in the long term. 
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This study recommends improvement in the management of plastic waste around the world requires an integrated policy reform 

approach along with technology innovation for community engagement. First, there is a dire need for close global coordination 

about management regulations of plastic waste. In this respect, the idea of international agreements can be initiated, similar to 

the Paris Agreement on climate change, which can bind reduction and recycling rates targets of plastic wastes. That might then be 

supported through a global monitoring system using predictive analytics to monitor progress toward meeting such targets and 

hold countries accountable. 

The second recommendation relates to the implication of extended producer responsibility programs, which would make 

manufacturers be held responsible for the entire lifecycle of the products they make in plastic, encompassing waste management. 

This can motivate companies to design more easily recyclable products or ones that stay in consumption longer, thereby reducing 

plastic waste at source. Besides that, waste-to-energy technologies can convert non-recyclable plastics into energy, therefore 

reducing the volume of waste reaching landfills. Beyond this, the government must go further in exploring specific plastic waste 

taxes or levies especially single-use items, which could decrease consumption and spur the usage of sustainable alternatives for 

such stuff. After all, changing consumer behavior requires educational campaigns. Public awareness of the impact of plastic waste 

on ecology through publicity events involving alternatives such as reusable bags, bottles, and packaging will help. Lastly, 

investment in the development of degradable plastics and funding research into alternative materials will decrease the demand 

for plastics, reducing the damage the environment is afflicted with. 

Focus on the USA 

Plastic waste management initiatives in the United States carry with them tremendous challenges and opportunities. The country 

boasts one of the highest rates of plastic waste per capita in the world, a large fraction of which ends up in landfills or being 

incinerated. Statistics show that the community recycling programs have resulted in a general rate of recycling plastics at 

approximately 9% with the various municipal programs available. A lack of one uniform national system for recycling results in 

inefficiency, and requirements certainly differ in the various municipalities. Presently, the United States exports much of its 

recyclable plastic to other countries, mainly China. With China's policy called "National Sword," which bans the importation of 

foreign waste, the U.S. has been under increasing pressure to deal with its plastic waste. 

Several states and cities in the U.S. have already been proactive, enacting legislation to actively help reduce plastic waste. For 

example, California enacted comprehensive legislation banning single-use plastic bags and encouraged the use of biodegradable 

alternatives. The state also pursued an ambitious goal to reduce plastic waste through recycling and composting. Yet, these 

activities are not the same in all parts of the country, and there are disparities in methods of plastic waste management. Besides, 

due to the lack of federal legislation concerning plastic waste reduction, the overall scaling-up of local successful initiatives is 

limited. 

Drawing from leading international practices, a series of recommendations could be proffered on ways the U.S. might revitalize 

the way it manages plastic waste. First, the institution of a federal ban on certain types of single-use plastics could go a long way 

in reducing plastic waste in disposition-a proposition quite similar to the one laid down by the European Union. These interventions 

will have to be accompanied by corresponding nationwide EPR policies that hold producers responsible for end-of-life disposal of 

their plastic products. In addition, there is an investment in the modern revision of the recycling infrastructure. These activities 

could also involve new sorting technologies at recycling plants, like AI robots, which will make it easier. The U.S. should also move 

in the direction of incentivizing the creation of circular economy models in which plastics are designed for reuse, remanufacturing, 

or recycling. Tax breaks or grants for firms moving toward sustainable packaging solutions can create innovation that reduces 

waste. Second, sound public-private partnerships will be required for the implementation of waste-to-energy plants and 

alternatives to biodegradable plastics. Finally, public education on responsible consumption and proper waste disposal practices 

can inform consumer choices and habits to move toward more sustainable directions. 

Challenges and Limitations 

Ethical Use of Environmental Data 

Ethical issues raised by predictive models and environmental data used in policy decisions are those related to data privacy, 

especially if the model uses geolocation data to track waste generation patterns. Such application shall be made to respect citizens' 

rights to privacy. Predictive models also run a risk of bias since predictive models are as good as the data they are trained on.  If 

that data has inequalities they use underreporting in low-income communities, the models will further exacerbate the inequalities 

in this intervention on waste management. 

Moreover, there are also ethical questions of prioritization of resources: For example, predictive models that indicate which affluent 

areas are better at recycling may tempt policymakers to provide more resources to those areas to maximize overall rates of 

recycling. In that way, it could occur at the expense of underserved communities, which may remain out of reach for waste 
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management infrastructures. Policies need to be designed in a way that advances equity through data and does not further worsen 

existing social disparities.  

Data quality, Model Interpretability, and Generalizability 

Predictive models can inform plastic waste management policy only as well as the data on which they are based. However, 

incomplete, out-of-date, or inconsistent data on plastic waste generation and recycling rates are common, and all three conditions 

erode model predictive accuracy. Besides, the interpretability of complex machine learning models such as neural networks is 

problematic. Policymakers might not understand why a particular prediction has been arrived at and as a result, may show 

skepticism towards the models' recommendations. 

Another limitation involves the generalization of predictive models across diverse regions. There may be regional differences in 

how waste is disposed of and cultural attitudes toward recycling, or perhaps some form of economic factor that would make a 

model developed and trained on data from one country unsuitable for application in another. Hence, a key direction lies in the 

development of models that could be readable in an adaptive way across different contexts, considering regional variations in 

waste management systems. 

Future Research Directions 

With all said and done, there are still opportunities for improvements in model accuracy using more diverse data sets. According 

to the predictive models, more diversified data and more complete data sets would help in improving accuracy. These aspects 

include data on developing countries, which were still scant in most international waste management studies. Increased sources 

of data would promote better conditions in the models, considering the different conditions of different regions. Satellite imagery, 

IoT sensors, and real-time monitoring can also be integrated to enhance the granularity and timeliness of the forecast. Real-time 

data, for example, will aid in mapping the exact usage of the waste bins for use in optimizing waste collection schedules and 

preventing overflows, reducing environmental impacts. These activities include other possibilities, such as the use of machine 

learning techniques like ensemble learning, whereby multiple models' predictions are combined to obtain a better predictive 

performance. Models can be developed that focus on the relationships in waste generation, rates of recycling, and the impact of 

policy interventions. Furthermore, the incorporation of socioeconomic and demographic variables into such models would produce 

far more useful insights into the driving forces behind plastic waste generation and recycling behaviors. 

Forging forward, key potential improvements can be made in real-time waste management and integration of AI. However, real-

time waste management using AI systems is bright and abounds in a few prospects. The accuracy of identifying and segregating 

the different types of plastics using AI-powered waste sorting technologies increases the efficiency of recycling facilities. Besides, 

the use of algorithms to optimize waste collection routes by AI will reduce fuel consumption, thereby reducing greenhouse gas 

emissions and making waste management more sustainable. Future research may be performed in the application of blockchain 

technology in plastic waste management because it allows increased levels of transparency and traceability. It records the time 

and source when a particular material of plastic is supplied, hence preventing illegal transfers by ensuring accountability through 

transactions that track its production, disposal, and recycling. Predictive models that integrate climate projections can help allow 

policymakers to anticipate long-term impacts on ecosystems and biodiversity. Together, these developments can lead to a more 

resilient and adaptive waste management system that is better equipped with the ability to handle the increasing plastic waste 

problem. 

6. Conclusion 

The chief objective of this study was to perform an extensive analysis of global plastic waste management practices in the USA, 

with a specific concentration on pinpointing the economic and social implications of these practices. This research project therefore 

intends to probe into the waste management practice applied in different countries for understanding the various best practices, 

challenges, and areas of improvement. The research project also aimed to employ AI-driven predictive models, notably, gradient 

boosting algorithms, linear regression, and random forest to predict the future trends in plastic waste generated. Diverse datasets 

were used, to ensure that the study of global plastic waste management practices was comprehensive. Primary data on the 

conditions of global plastic waste generation was obtained through the World Bank's database, which provides detailed data on 

waste composition, generation rate, and methods of disposal in many countries. Also, the sources of economic indicators were 

OECD reports and UNEP publications on the hidden economic costs of plastic waste to municipal budgets. Data on its social 

impact, such as health effects and metrics involving environmental pollution, were provided by the World Health Organization 

through studies it conducted along with reports from environmental NGOs such as Greenpeace. The Gradient Boosting model 

performed the best with relatively high accuracy, followed by Logistic Regression and Random Forest Classifier. Besides, 

the Gradient Boosting model offered the highest Macro Average F1-score, which suggests better overall performance in balancing 

precision and recall for all classes. Predictive insights provided by the proposed models are valuable tools to expect future trends 

and patterns in plastic waste generation.  Advanced analytics and machine learning can help predict the volume of plastic waste 
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generated across different geographies and sectors. Application of the predictive models in plastic waste management contexts 

has huge potential for information and shaping policy decisions. Predictive analytics can use historical trends on production, 

consumption, and generation of waste and recycling rates of plastics to create forecasts about the future and define high-risk 

areas.  
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