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| ABSTRACT 

In the time of AI era, Industrial power load is gradually rising due to the rapid expansion of the chip manufacturing facilities. So 

that accurate forecasting of industrial power load is important to achieve efficient grid planning and overall energy 

management. But, due to the nonlinear, volatile and multi scale nature of industrial power load data, the conventional statistical 

model face challenges in forecasting efficiently. To address these challenges, a novel hybrid deep learning model, CNN-

Transformer-BiLSTM has been proposed that integrates the feature extraction capacity of convolutional neural networks (CNN), 

the long-range dependency modeling of the transformer architecture and the sequential learning strength of bidirectional long, 

short-term memory (BiLSTM) networks. The CNN layers efficiently capture the local temporal patterns and feature correlations 

within the load data sets, Transformer layers employs self-attention mechanisms to model complex long-term dependencies and 

contextual relationships. The BiLSTM layer further enhances temporal representation by learning bidirectional dependencies, 

thus improving the overall prediction accuracy. Historical monthly industrial electricity load data from the U.S. Energy 

Information Administration (EIA) spanning over two decades are used to train and evaluate the model. The proposed model 

output has been compared with other standalone and hybrid deep learning models. The proposed CNN-Transformer-BiLSTM 

achieves superior forecasting accuracy with Mean Absolute Percentage Error (MAPE) of 1.23%, Root Mean Square Error (RMSE) 

of 1,276 MWh and Mean Absolute Error (MAE) of 1,040 MWh.  
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1. Introduction   

The efficient and reliable operation of modern power grids critically depends on accurate electricity demand forecasting, which 

serves as a fundamental component of operational planning, grid stability assessment, and strategic financial decision-making 

[1]. Among all consumer categories, the industrial sector poses one of the most complex yet impactful forecasting challenges 

due to its high load magnitude, volatility, and sensitivity to economic and operational factors. In 2021, industrial electricity 

consumption accounted for approximately 33% of total U.S. energy use, underscoring its central role in grid operation and 

planning [2]. For nearly two decades, U.S. electricity demand remained relatively stable, as efficiency improvements and 

structural shifts from manufacturing to service-oriented economies offset growth driven by population expansion and economic 

activity. However, this long-standing trend has changed markedly since 2020. Accordingly, to the U.S. Energy Information 

Administration (EIA), total electricity consumption is projected to grow at an average annual rate of 1.7% through 2026, with the 

commercial and industrial sectors experiencing even higher growth rates of 2.6% and 2.1%, respectively [3]. More notably, 

industrial electricity demand is expected to increase by approximately 43% between 2024 and 2050, driven primarily by the 
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electrification of industrial processes and the rapid expansion of energy -intensive data centers [4]. This accelerating and 

increasingly dynamic demand profile highlights the urgent need for more accurate, adaptive, and robust load forecasting 

methodologies tailored to industrial gird operation.  

Traditional electrical power load forecasting has largely relied on statistical techniques such as autoregressive integrated moving 

average (ARIMA), Holt Winters exponential smoothing, and regression-based models [5]. While these methods offer 

interpretability and ease of implementation, they often struggle to capture the nonlinear relationships, non-stationary behavior, 

and long-term temporal dependencies inherent in real world energy consumption data [5]. To address these limitations, various 

advanced forecasting approaches have been proposed, including fuzzy neural networks [6], gray algorithms [7], gray Markov 

model [8] and support vector regression techniques [9]. However, many of these methods exhibit limited scalability and reduced 

effectiveness when applied to large scale, high dimensional or highly volatile datasets typical of industrial load profiles [10-13]. In 

related renewable energy forecasting applications, such as photovoltaic (PV) power prediction, Artificial Neural Networks (ANNs) 

and Support Vector Machines (SVMs) [14-15] have been widely adopted. Although ANNs generally outperform classical time-

series models on nonlinear datasets, they often encounter challenges related to computational complexity, overfitting, and 

limited performance when handling large datasets or complex feature interactions [15].    

More recently, deep learning-based approaches have gained significant traction in power load forecasting, particularly Recurrent 

Neural Networks (RNNs) and their advanced variants, such as Long Short-Term Memory (LSTM) networks [16]. LSTM 

architectures are well suited for energy forecasting tasks due to their ability to model long term temporal dependencies and 

mitigate vanishing gradient issues [17]. However conventional LSTM models process sequential data in a unidirectional manner, 

potentially restricting their ability to fully exploit temporal correlations across past and future observations. Bidirectional LSTM 

(BiLSTM) networks address this limitation by learning temporal dependencies in both forward and backward directions, thereby 

enabling a more comprehensive representation of load dynamics [18]. Despite their improved predictive capability, Bi-LSTM 

models typically require large training datasets and incur substantial computational costs, which can hinder their practical 

deployment in real-time or large-scale industrial forecasting applications.  
In parallel, Transformer-based architectures have emerged as powerful alternatives for time series forecasting, including 

electricity load prediction, owning to their attention mechanisms and series forecasting, including electricity load prediction, 

owing to their attention mechanisms and ability to capture long-range dependencies without recurrent structures. Several 

studies have demonstrated the effectiveness of Transformer variants in energy forecasting. For example, Fourier Transform-

based transformers combined with enhanced optimization algorithms have been proposed to achieve high-resolution load 

forecasting while addressing sequence redundancy and computational efficiency challenges in energy systems [19]. Informer 

[20], Autoformer [21], SmartFormer [22], Temporal Fusion Transformer (TFT), improved Autoformer [24] have been introduced in 

different load application. Despite their strong predictive capabilities, transformer-based models exhibit notable limitations, 

including high data requirements and sensitivity to data quality, which can pose challenges in industrial environments where 

historical load data and auxiliary covariates may be limited or proprietary [25]. 

To overcome the limitations of existing machine learning models for industrial power load forecasting, a framework called CNN-

Transformer-BiLSTM has been proposed. In data preprocessing begins with seasonal-tread-loess (STL) decomposition, which 

separates the raw time series into trend seasonal, and residual components. Each component is then processed through a 

Convolutional Neural Network (CNN) to capture short-term, long temporal dependencies. The outputs of the CNN layers are fed 

into Transformer block, which efficiently models long range dependencies and global correlations across time. Finally, a Bidirectional 

LSTM (BiLSTM) layer refines the sequential information in both forward and backward directions, providing a contextual 

understanding of temporal dynamics that further improves forecasting accuracy. Collectively, the proposed architecture addresses 

the challenges of noise, multiscale temporal patterns, and long-term dependencies, making it particularly suitable for the complex 

and irregular patterns observed in the U.S. industrial power load data.  

The contributions of this research work are: 

• A novel hybrid deep learning-based model CNN-Transformer-BiLSTM has been utilized for industrial power load 

forecasting in the U.S. This approach is designed to compatible the model for feature extraction, long range dependency 

modeling and the sequential learning strength. To improve the quality of learning and enable the models to handle 

diverse seasonal patterns and trends in industrial power load requirement, STL (Seasonal-Trend decomposition using 

Loess) has been introduced as a data preprocessing step.  

• This work addresses a notable gap in the existing literature, as there has been no prior study focused on industrial power 

load forecasting in the United States.  

The structure of the paper is organized as follows: Section II describe the related work on industrial power load forecasting models, 

Section III presents the performance evaluation matrix to evaluate our proposed model, Section IV outlines the data collection and 



Industrial Power Load Forecasting for Grid Operation Using a CNN-Transformer-BiLSTM Model  

Page | 18  

preprocessing, Section V depicts the details about the proposed forecasting model Section VI results and discussion present 

benchmarking outcomes and insights, and the final section VII concludes with key findings and future research directions. 

 

2. Literature Review on Industrial Load Forecasting 

In this section, a range of different previously developed data driven model for industrial power load forecasting has been 

discussed and highlighting their methodologies, performance, and real-world applicability. A hybrid intelligent forecasting model 

combining Reinforcement Learning, Particle Swarm Optimization (PSO), and Least Squares Support Vector Machine (LSSVM) for 

short-term industrial power load forecasting was developed for single industrial power consumer [26]. Experimental results 

demonstrated that the proposed Q-PSO-LSSVM model achieved significantly lower mean absolute percentage error (MAPE) 3–

5%. A hybrid model named TCN-LightGBM [27] combining a Temporal Convolutional Network (TCN) and Light Gradient 

Boosting Machine (LightGBM) for accurate short-term industrial power load forecasting has been developed. The model uses a 

fixed length sliding time window to reconstruct electrical features (load, current, power, etc.) along with meteorological and 

calendar data, enabling the TCN to extract long-term temporal dependencies and hidden patterns. TCN-LightGBM achieves the 

lowest MAPE around 2-4%. Neural Network Autoregression (NNAR) and Multilayer Perceptron (MLP) model proposed for 

forecasting monthly industrial electricity consumption in Brazil. The study uses historical data from 1979 to 2020, obtained from 

the Central Bank of Brazil, divided into training (1979-2018) and testing (2019-2020) datasets. MLP model outperformed others, 

achieved the lowest MAPE 3.4% [28]. A novel Fourier Transform (FT)-Transformer and Genetic Algorithm (GA) hybrid model [29] 

for accurate energy forecasting and load optimization has been developed in industrial and commercial energy systems. The FT-

Transformer leverages self-attention mechanisms and Fourier-based seasonality encoding to capture long-term dependencies 

and temporal patterns in large-scale energy demand data. Experimental results demonstrate that the FT-Transformer achieved a 

Mean Absolute Error (MAE) of 3.03×10⁵ kWh and Root Mean Square Error (RMSE) of 3.31×10⁵ kWh, outperforming RNN, PSO, 

and tree-based models by up to 48% in accuracy and reducing computational time by 38%. A hybrid forecasting model DCN–E-

TCN [30], that integrated a Data Completion Network (DCN) with an Enhanced Temporal Convolutional Network (E-TCN) for 

ultra-short-term industrial load prediction. Results showed that the DCN–E-TCN model significantly outperforms conventional 

TCN, GRU, and LSTM models, achieving up to 35% lower RMSE and 30% higher R², leading to highly stable and precise forecasts 

suitable for industrial demand response, production scheduling, and grid stability applications. A hybrid ensemble forecasting 

model [31] that combined Long Short-Term Memory (LSTM) networks with multiple machine learning algorithms, Support 

Vector Regression (SVR), Extreme Gradient Boosting (XGBoost), and Random Forest (RF) to enhance the accuracy and robustness 

of industrial power demand forecasting. The ensemble used Bayesian optimization for parameter tuning and a stacking strategy 

to fuse the predictions from base learners, enabling effective capture of both linear and nonlinear temporal dependencies. 

Experimental results showed that the proposed LSTM-based hybrid ensemble achieved superior performance with a Mean 

Absolute Percentage Error (MAPE) below 1.5%, outperforming standalone deep learning and traditional models such as GRU, 

CNN, and ARIMA. A case study of Vietnam introduced a hybrid forecasting model that combines Ensemble Empirical Mode 

Decomposition (EEMD) with a Long Short-Term Memory (LSTM) [32] network to improve the accuracy of short-term industrial 

load prediction. The model validated using hourly power load data from a Vietnamese industrial manufacturing plant, collected 

over approximately 18 months and characterized by its nonlinear and highly fluctuating nature. Experimental results 

demonstrated that the proposed EEMD-LSTM model achieves superior performance with a Mean Absolute Percentage Error 

(MAPE) of approximately 1.3% for 1-step forecasting, significantly outperforming standalone models like Linear Regression (LR), 

Artificial Neural Networks (ANN), and a standard LSTM. A novel deep learning model that leveraged a hybrid ensemble strategy 

and an error correction mechanism to accurately forecast industrial power demand. The model first employed an ensemble of 

Gated Recurrent Unit (GRU) networks, where base learners were generated by perturbing GRU parameters using a novel Multi-

Objective Molecular Dynamics Theory Optimization Algorithm (MMDTOA) and then integrated via kernel ridge regression 

stacking. Experimental results demonstrated that the proposed model achieves superior performance with a Normalized Mean 

Absolute Error (NMAE) as low as 3.684%, outperforming eight other models including CNN and LSTM, thereby highlighting its 

effectiveness and robustness for complex industrial forecasting tasks [33]. A hybrid machine learning model designed for day-

ahead industrial load forecasting utilizes an Extreme Learning Machine (ELM) as its base predictor, with its initial weights and 

biases optimized by a Firefly Algorithm (FA) to enhance accuracy. The results showed that the proposed LCR-AdaBoost-FA-ELM 

model achieves a Mean Absolute Percentage Error (MAPE) of 3.01%, significantly outperforming standalone ELM and SVR 

models [34]. A Typical Load Profile (TLP)-supported Convolutional Neural Network (CNN) framework [35] designed to improve 

short-term industrial load forecasting accuracy by incorporating typical daily and weekly load patterns into the learning process. 

Results demonstrated that the proposed TLP-CNN model outperforms baseline models such as LSTM, GRU, and SVR, achieving a 

Mean Absolute Percentage Error (MAPE) of 2.17%, thereby enhancing forecasting stability and adaptability across varying 

industrial processes. 
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3. Performance Evaluation Matrix 

3.1 Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) is computed by taking the sum of the absolute difference between each predicted value and its true 

value and then dividing by the total number of data samples [35]. The MAE depicts as:  

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑓𝑖|

𝑁

𝑖 = 1

  

where yi is the actual and fi is the forecasted value for the power load and N is the number of data samples. 

3.2 Root Mean Squared Error (RMSE) 

Root Mean Squared Error (RMSE) defines as the square root of the average squared difference of actual value and prediction value, 

in other words, the square root of Mean Squared Error (MSE) [35]. The RMSE is depicted as:  
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where yi is the actual and fi is the forecasted value for the power load and N is the number of data samples. 

3.3 Mean Absolute Percentage Error (MAPE) 

Mean Absolute Percentage Error (MAPE) calculates the average of the absolute percentage errors between actual and predicted 

values. [36] The MAPE is defined as:  
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100
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where yi is the actual value and fi is the forecasted value for the power load, and N is the number of data samples 

3. Performance Evaluation Matrix 

In this section, the detailed process for collecting and pre-processing industrial power load data has been discussed 

3.1 Data Collection 

The historical industrial power load dataset obtained from the U.S. Energy information administration (EIA), as shown in Figure 1 as 

curve. Datasets are arranged in monthly periods and contain 159 observations from January 2012 to May 2025. From the curve, we 

have seen that, the total industrial power load has increased gradually, with a notable power requirement drop in 2020.   

 

Figure 1: U.S. Monthly Industrial Power Load Data from January 2012 to May 2025 
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3.2 Data Preprocessing by Decomposition Technique 

To enhance the quality of forecasting and enable the model to learn distinct temporal patterns more effectively, we apply a 

decomposition-based data preprocessing approach prior to model training. Specifically, we use the Seasonal-Trend decomposition 

using Loess (STL) technique to disaggregate the original time series into three fundamental components: trend, seasonal, and 

residual as shown in Figure 2. This decomposition enables the separation of systematic patterns in the data, thereby simplifying the 

complexity of the forecasting task and improving model interpretability.  

 

 

Figure 2: Seasonal-Trend decomposition using Loess (STL) technique 

 

Mathematically, the original time series Y(t) is expressed as the sum of its components: 

 

𝒀(𝒕) = 𝑻(𝒕) + 𝑺(𝒕) + 𝑹(𝒕) 

 

Where, T(t) represents the trend component, S(t) denotes the seasonal component, and R(t) is the residual component. 

 

After decomposition, each component T(t), S(t) and R(t) is individually transferred as a separate input feature to the proposed 

hybrid deep learning architecture. This enables the model to learn unique temporal dependencies from each component without 

interference. The trend component contributes to long-term memory learning, the seasonal part provides information about 

periodic patterns and the residual highlights anomalies or short-term volatility. By integrating STL decomposition into the data 

preprocessing pipeline, the model benefits from a more structured and noise reduced input space, ultimately targeting to improve 

forecasting accuracy.      

 

3. Proposed Model for Industrial Power Load Forecasting 

In this study, seasonal trend decomposition using loess (STL) techniques has been utilized in the proposed hybrid model, to achieve 

high precision industrial load forecasting. This section includes the details of the forecasting methodology to generate final load 

predictions, the architecture design of the proposed hybrid model, and the parameter configuration by hyperparameter tuning 

process.   

3.1 Flowchart of Forecasting Method by Proposed Model 

The flowchart of the proposed methodology for industrial power load forecasting is outline in figure 3. The process starts with the 

collection of industrial power load data, which serves as the input time series for the forecasting model. This dataset contains 

temporal load information reflecting industrial power consumption patterns influenced by seasonality, trends, and irregular 

fluctuations.   
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Figure 3: Flow diagram for the Methodology of Industrial Power Load forecasting by CNN-Transformer-BiLSTM model 

In the data preprocessing phase, a decomposition technique such as seasonal trend decomposition technique using loess (STL) 

has been applied to separate the original load data into three distinct components: trend, seasonal, and residual. This step helps the 

model capture diverse temporal behavior more effectively and reduces the complexity of the forecasting task.  

The proposed hybrid model integrates three deep learning architecture: convolution neural network (CNN), a transformer 

encoder and a bidirectional long-short term memory (Bi-LSTM). The CNN extract the feature to identify local temporal 

dependencies and short-term variations within the decomposed sequences. The transformer encoder is then employed to model 

long-range temporal dependencies through multi-head self-attention mechanisms, enhancing the representation of global 

patterns. In last stage, the Bi-LSTM captures bidirectional temporal dynamics, enhance the model to learn from both past and future 

dependencies in the time series.  

In the final phase, 80% of the data was used to train the proposed CNN-Transformer-BiLSTM model and 20% data was used for 

testing. Model performance is evaluated using mean absolute error, mean squared error and root mean square error to ensure the 

forecasting accuracy and robustness. To locate the optimum parameter combination, hyperparameter tuning has been performed. 

By these techniques, the model has been optimized by tuning different parameter such as learning rate, number of filters, hidden 

units and attention heads to improve the overall predictive performance.  

3.2 Architecture and Mathemathical Modeling of Proposed Model 

The proposed CNN-Transformer-BiLSTM architecture integrates deep learning techniques to address the complex temporal 

variability, nonlinear dependencies, and multi-scale patterns inherent in industrial electricity load data. A details architecture of the 

CNN-Transformer-BiLSTM model has been shown in Figure 4.  

In the first layer, the three decomposed components are concatenated to form a multi-feature input matrix, which is then fed into 

a Convolutional Neural Network (CNN). The CNN layer employs a 1-D convolutional filters to extract high level spatial-temporal 

features from the decomposed signals, enhancing local patten recognition. The effectiveness in time series analysis comes from 

their ability to extract meaningful local patterns over time. One dimensional (1D) convolutional kernel that move along the 

sequence, applying convolutional operations to small and overlapping segments. Each segment is transformed into an embedding 

vector, that is called “token”, which captures important short-term features and trends within the time series [23]. Mathematically, 

the convolutional layer represent as:    

𝑦𝑡 = 𝜎 ( ∑ (𝑤𝑖 . 𝑥𝑡+𝑖 + 𝑏)

𝑘 − 1

𝑖 = 0

)                               

where, yt = Output of convolutional operation, Wi = 1D convolutional filter (kernel) of size K, xt+i = input time series of length T, 𝞼 = 

Activation function, b = Bias of output map 
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In the second layer, the feature maps extracted by the CNN then processed by a transformer encoder block, which is effectively 

captures long-range temporal dependencies and contextual relationships among features. The transformer architecture functions 

based on self-attention mechanism, allowing the model to assess the relative importance of each time step with respect to others in 

the sequence. By this mechanism, the network dynamically learns the global temporal interactions without relying on sequential 

recurrence.  

 

 

 
 

Figure 4: Seasonal-Trend decomposition using Loess (STL) technique 

 

 

Mathematically, given an input sequence 𝑈 ∈ 𝑅𝑇×𝑑 (where T denotes the number of time steps and d represents the feature 

dimension, with U= 𝒚𝒕 being the CNN output), the Transformer encoder computes query, key, and value matrices for each attention 
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head as 𝑄(ℎ) = 𝑈𝑊𝑞
(ℎ)

, 𝐾(ℎ) = 𝑈𝑊𝑘
(ℎ)

, 𝑉(ℎ) = 𝑈𝑊𝑣
(ℎ)

. The scaled dot-product attention is then applied to model inter-temporal 

relationships: 

 

𝐴𝑡𝑡𝑛(ℎ)(𝑈) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄(ℎ)𝐾(ℎ)𝑇

√𝑑𝑘

)𝑉(ℎ) 

The outputs of all attention heads are concatenated and projected using a linear transformation as 

𝑀𝐻𝐴(𝑈) = [𝐴𝑡𝑡𝑛(1), 𝐴𝑡𝑡𝑛(2), ……𝐴𝑡𝑡𝑛(𝐻)] 𝑊0 

To improve training stability and prevent overfitting, a residual connection with dropout and layer normalization is applied, resulting 

in  

𝑈′ = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑈 + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝑀𝐻𝐴 (𝑈))) 

The resulting attention-refined features are then passed through a position-wise feed-forward network (FFN), defined as  

𝐹𝐹𝑁(𝑈′) =  𝑊2 (𝑅𝑒𝐿𝑈 ( 𝑊1𝑈
′ +  𝑏1)) +  𝑏2 

Followed by another residual connection and normalization step to produce the final encoded representation: 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐵𝑙𝑜𝑐𝑘(𝑈) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑈′ + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐹𝐹𝑁 (𝑈′))) 

Here, Wq,Wk,Wv,Wo,W1,W2 represent the learned weight matrices, b1 and b2 are bias terms, and dk denotes the attention dimension. 

Through this hierarchical mechanism, the Transformer encoder effectively integrates both the local feature dependencies captured 

by the CNN and the global temporal relationships across the sequence. This attention-enhanced representation is then forwarded 

to the BiLSTM layer. 

In the third layer, the attention refined feature sequence is passed through a bidirectional long short-term memory (BiLSTM) 

network. By processing data in both forward and backward temporal directions, temporal directions, the BiLSTM captures contextual 

dependencies from past and future time steps, improving temporal coherence in forecasting. By this mechanism, BiLSTMs enable 

the maintenance of important context across long sequences.  

 

The mathematical operations governing the LSTM unit are as follows:    

 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝐶̃ 𝑡 = 𝜎(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 

𝑐𝑡 = 𝑓𝑡 . 𝑐𝑡−1 + 𝑖𝑖 . 𝐶̃ 𝑡 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏0) 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡) 

where, σ = Activation function, ft = Forget gate, it = Input gate, ct = Cell State Update, ot = Output Gate, C̃ t = Cell state, xt = Input 

vector at time t, ht−1 = Hidden state vector from the previous time step, ct−1 = Cell state vector from the previous time step, W and U 

= Learned weight matrices, b = Learned bias terms.  

The output from the LSTM layers is concatenated to form the final representation:  

ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗, ℎ𝑡

⃖⃗ ⃗⃗ ] 

where, ℎ𝑡
⃗⃗  ⃗, ℎ𝑡

⃖⃗ ⃗⃗  denote the hidden states of the forward and backward LSTMs, respectively. 

The BiLSTM output is then flattened and connected to a fully dense layer with linear activation to generate the final forecasted load 

values.  
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4. Simulation Results 

This section presents a comprehensive evaluation of the proposed CNN-Transformer-BiLSTM model to assess its forecasting 

capability and performance. A comparison analysis has been done between other deep learning model such as CNN, LSTM, BiLSTM, 

CNN-LSTM, with the proposed approach. To compare and measure forecasting performance across different models and scenarios, 

the evaluation metrics such as mean absolute percentage error (MAPE), root mean square error (RMSE) and mean absolute error 

(MAE) are employed.  

 

4.1 Result Analysis of Proposed Model 

The comparative forecasting performance of various deep learning models for total industrial power load is illustrated in Fig. 5. The 

results demonstrate that the proposed CNN-Transformer-BiLSTM hybrid model significantly outperformed all other deep learning 

and hybrid models in terms of all three metrics. 

Traditional standalone models such as CNN, LSTM, and Bi-LSTM achieved moderate forecasting accuracy, with MAPE values of 2.15 

%, 2.09 %, and 1.96 %, respectively. While hybrid models such as CNN-LSTM and CNN-BiLSTM improved temporal feature 

extraction, they still suffered from higher RMSE and MAE values, notably with the CNN-LSTM model showing an RMSE of 2772 

MWh and an MAE of 2349 MWh. Incorporating bidirectional learning in CNN-BiLSTM-CNN and self-attention mechanisms in the 

Transformer-BiLSTM network improved learning of long-term dependencies, reducing RMSE to 1917 MWh and 2611 MWh, 

respectively. 

However, the proposed CNN-Transformer-BiLSTM model achieved the lowest MAPE (1.23 %), RMSE (1276 MWh), and MAE (1040 

MWh), indicating superior forecasting accuracy and generalization capability. This improvement can be attributed to the synergistic 

integration of convolutional layers for spatial–temporal pattern extraction, transformer layers for global attention-based feature 

refinement, and bidirectional LSTM layers for capturing long-range temporal dependencies in both forward and backward 

directions. These combined mechanisms enable the proposed model to achieve smoother convergence and higher predictive 

stability across dynamic load variations in industrial energy demand.  

 

 
 

 

Figures 5 and 6 illustrate the comparison between the actual and predicted industrial power load using the proposed CNN-

Transformer-BiLSTM model. The blue solid line represents the actual recorded values, while the orange dashed line indicates the 

predicted outputs. The close alignment between the two curves demonstrates that the proposed model effectively captures both 

the short-term fluctuations and long-term seasonal variations in industrial energy consumption. The prediction trend closely follows 

the actual data, indicating that the hybrid architecture successfully integrates local feature extraction (via CNN), temporal 

dependency modeling (via BiLSTM), and long-range correlation learning (via the Transformer). This strong agreement validates the 

model’s superior forecasting accuracy and robustness in handling nonlinear and dynamic industrial power load patterns. 
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Figure 5: Actual Vs Predicted Curve by using model (a) CNN, (b) LSTM, (c) BiLSTM (d) CNN LSTM 
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Figure 6: Actual Vs Predicted Curve by using model (a) CNN-BiLSTM, (b) CNN-BiLSTM-CNN, (c) Transformer-BiLSTM (d) CNN-

Transformer-BiLSTM 



JMCIE 7(1):16-30 

 

Page | 27  

4.2 Comparison with Previous Works in Application Point of View 

In this section, a comprehensive comparison of hybrid deep learning based forecasting model for industrial power load application 

is presented. Recent research has explored diverse combinations of statistical model, neural networks, and optimization algorithms 

to enhance prediction reliability in complex industrial load environments. The Q-PSO-LSSVM [26] model, which integrates 

reinforcement learning with support vector machine, with a reported MEAN of 3% for short-term industrial load forecasting. 

Similarly, TCN-LightGBM [27] framework achieved a MAPE around 2-4% by combining convolutional networks with gradient 

boosting for feature extraction and temporal correlation modeling.  

 

 

Table 1: Comparisons with the Previous Works 

 

 

A multi-layer perceptron (MLP) [28], achieved MAPE values near 3.4%, while the FT-Transformer-GA [29] and DCN-E-TCN [30] 

frameworks combine temporal attention and data completion networks to capture fine grained temporal dependencies, reporting 

Mean Absolute Error (MAE) of 3.03×10³ kWh and Root Mean Square Error (RMSE) of 3.31×10³ kWh, respectively. Hybrid ensemble 

methods such as LSTM+SVR+XGBoost [31] and EEMD-LSTM [32] achieved superior accuracy with MAPE 1.5% and 1.3% respectively. 

Other approaches, such as LCR-AdaBoost-FA-ELM [34], further optimized forecasting accuracy through adaptive feature learning, 

achieving exceptionally low MAPE values of approximately 0.31%. While these models collectively signify significant progress in 

industrial load forecasting, they focus on short-term or domain-constrained datasets such as steel plant or furniture factory loads.  

In contrast, the proposed CNN-Transformer-BiLSTM framework introduces a generalized and multi-stage hybrid learning 

architecture designed to overcome these limitations. This integrated design enables the proposed model to provide robust and 

scalable forecasting across various industrial sectors and temporal horizons. When evaluated using USA’s industrial load data from 

the EIA, the model achieved a MAPE of 1.23%, RMSE of 1276 MWh, and MAE of 1040 MWh, demonstrating its superior performance 

and generalization ability compared to existing state-of-the-art models.  

 

5. Conclusion 

The proposed CNN-Transformer-BiLSTM, hybrid deep learning model integrates convolutional layers for extracting local temporal 

patterns, transformer layers for capturing long range dependencies and bidirectional LSTM layers for capturing bidirectional 

temporal correlations. The proposed architecture combines the strengths of each component, enabling the model superiority and 
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forecasting stability. According to the experimental evaluation, the model outperforms among all other deep learning and hybrid 

model compared, with a Mean Absolute Percentage Error (MAPE) of 1.23%, Root Mean Square Error (RMSE) of 1,276 MWh and 

Mean Absolute Error (MAE) of 1,040 MWh.  The results represent a substantial improvement and highlighting the model’s capability 

to capture complex nonlinear dependencies and seasonal variation in industrial power demand. The close alignment between the 

predicted and actual load profile curves validates the accuracy of the proposed approach. In future research, this framework will be 

extended to incorporate additional impacting factors such as weather and industrial operational hours data to enhance energy 

management and grid reliability.  
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