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| ABSTRACT 

This study is investigating three distinct semi-analytical methods (SAGPM, q-HALPM, and PYRDTM) to solve nonlinear equations 

in the context of turbine cooling during heat transfer and fluid flow. These methods include Shehu, Laplace, and Young 

transformations and are improved by Padé approximation. The analysis not only explores how these methods deal with the 

complicated problems of cooling turbine systems but also remove to test efficiency, accuracy, and convergence of each of them. 

A comprehensive comparison of approximate solution methods to identify the most effective approach for modeling nonlinear 

thermal systems is conducted. The findings provide critical insights in to efficient analytical estimations for applications of the 

above recent methods. Ultimately, the results contribute to the advancement of accurate and computationally efficient solutions 

for complicated fluid dynamics problems, with broad applicability to various flow-thermal challenges. Moreover, the results 

showed that the methods are effective and powerful and give an indication that q-HALPM has superior convergence and high 

accuracy compared to PYRDTM and SAGPM. 
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1. Introduction 

This study considers three advanced ways to solve complex equations to find the best method for getting accurate and 

reliable results while also being efficient with computing. The goal of the research is to make reliable estimates for complex 

thermodynamics and nonlinear mechanics problems by solving accuracy issues and improving solutions. The comparison study 

shows that the SAGPM, q-HALPM, and PYRDTM methods can create useful solutions, which helps us understand heat transfer 

and fluid flow better [1-2]. Their results matched numerical answers very well [3-5]. The Akbari–Ganji method [6] was further 

developed by Mirgolbabaee and others [8] in order to solve the nonlinear differential equations that control non-Newtonian 

fluid flow on a turbine disk in a symmetrical channel. This method was very close to the fourth-order Runge–Kutta method. At 

this time, Singh and Yadav [9] used the perturbation technique to examine the influence of different factors on the heat transfer 

and momentum equations of non-Newtonian fluid flow by employing the perturbation method. Their investigation brought out 

a strong correlation of temperature with Prandtl number and velocity with Reynolds number. In another study, Sheikhzadeh et al. 

[10] have solved the governing equations of the smooth non-Newtonian fluid flow in a porous-walled channel using the Galerkin 

and least squares methods. Comparing their results with the fourth-order Runge–Kutta method, they obtained good agreement 

and concluded that the Galerkin method was easier to implement and required less computation than the least squares method. 

Akinshilo et al. [11] studied the effect of heat on turbine disks and checked the validity of the analytical solutions by comparing 

them with numerical methods. They studied, by using two techniques—variational iteration and homotopy perturbation—the 

flow of a special fluid in a symmetric channel. To obtain an approximate solution for the non-Newtonian viscoelastic fluid flow 

through a circular channel, Al-Griffi and Al-Saif [12] applied the Yang transform combined with the homotopy perturbation 

method. Their study showed how the key factors influenced the main equations, and they found their results to be very close to 
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those obtained from numerical solutions. Lastly, Mohammed and Al-Saif [13] have introduced a novel approach to study the flow 

and heat transfer of non-Newtonian fluids on a turbine disk. The novel approach is called the Chebyshev homotopy perturbation 

method (CHPM), which is a combination of homotopy perturbation method and Chebyshev series. The result of this approach 

was compared with earlier studies that used numerical techniques. Semi-analytical approaches, therefore, in finding approximate 

solutions of complicated problems with strong nonlinearity, have become popular [14–19]. Semi-analytical methods are more 

precise and effective than traditional analytical methods, since these frequently become difficult due to complex nonlinear 

elements, while numerical methods may also be plagued with stability and convergence problems. Because they are very flexible, 

researchers find these methods especially interesting. They give a helpful way to study complex fluid movements, heat flow, and 

how materials act in engineering situations. Because of this, these methods are now important for solving tough real-world 

problems. These techniques, therefore, enable the researcher to develop control systems in such fields as fluid mechanics and 

heat transfer. In order to improve understanding and performance in such complex scenarios, there need to be accurate results 

[20]. This paper considered the thorny problem of cooling a turbine disk by using three methods: reduced differential transform 

method-Yang transform with Padé approximant (PYRDTM), q-homotopy-laplace transformation with Padé approximant (q-

HALPM) and Shehu transformation-Akbari-Ganji's method with Padé approximant (SAGPM). This study aims at comparing all the 

results and pointing out which method is the best. These methods are very important; they may increase the accuracy of the 

analysis for the nonlinear problems [21]. That is particularly significant in certain disciplines, like fluid mechanics and heat 

transfer, whose solution requires high precision. Comparing among these various approaches will therefore let one determine 

precisely how each fares in sophisticated equations. This also provides guidance on how to steer future research concerning the 

selection of proper mathematical tools in engineering and science. The three techniques make the calculations easier by using 

integral transformations. In order to make the results look good, SAGPM uses the Shehu transform, the inverse transform, and 

the Akbari method for finding the approximate solutions. Before applying the Laplace transform and the Padé approximation, 

"q-HALPM" initiates with the q-homotopy approach. For the last approximation, it ends with the inverse Laplace transform. 

Finally, in order to make the final solutions more accurate, PYRDTM uses the reduced differential transform, Young's transform 

on both sides, and the Padé approximation. Comparing the results from the three methods, it was found that the q-Homotopy 

method has the best performance in view of the speed of convergence and the correctness of the results. This method had fewer 

major errors than the others, proving it is better. The q-homotopy method showed better accuracy and effectiveness compared 

to the other methods, although those methods gave good results. This study compares three advanced methods to find out the 

best way to gain accurate and reliable results and to be efficient with computing power. The objective of the research is to 

obtain reliable estimates for complex problems in thermodynamics and nonlinear mechanics by dealing with accuracy issues and 

enhancing solutions. It is clear from the comparative study that the SAGPM, q-HALPM, and PYRDTM approaches can achieve 

realistic solutions, and therefore, it deepens our understanding of the fluid flow dynamics and heat transfer mechanisms. 

 

2.  Mathematical formulation 

  

2.1. Flow analysis 

This study looks at how flow and heat transfer happen at the same time in a non-Newtonian viscoelastic fluid moving 

over a turbine disc for cooling uses. The problem is illustrated schematically in Fig.1, where the x-axis runs parallel to the disc’s 

surface, and the y-axis is perpendicular to it. A porous disc at  𝑦 = 𝐿  serves as one boundary, while the wall aligned with the r-

axis is externally heated. The non-Newtonian fluid is uniformly injected through the perforated wall opposite the heated wall to 

provide cooling. 

As shown in Fig.1, this cooling scenario for the turbine disc can be interpreted as a stagnation point flow with fluid injection. For 

steady, axisymmetric flow of a non-Newtonian fluid, the governing equations are as follows: 

 

 

 

  

 

 

Fig. 1: A diagrammatic representation (right) illustrating the physical schematic of the problem (left). 

The equations can be expressed in cylindrical coordinates as follows [7] 

The continuity equation  
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𝒱𝑥
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𝛽
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1

𝑥
𝜂𝑥𝑦 +

𝜕𝜂𝑦𝑦

𝜕𝑦
].                                                                  (3) 

The boundary conditions are given by: 

𝒱𝑥(𝑥, 0) = 𝒱𝑦(𝑥, 0) = 0, 𝒱𝑥(𝑥, 𝐿) = 0,  𝒱𝑦(𝑥, 𝐿) = −𝑈                                                                    (4) 

where 𝒱𝑥 is the velocity in the x-direction, 𝒱𝑦 is the velocity in the y-direction, 𝛽 is the fluid density, 𝑃 is the pressure, and  𝜂𝑥𝑥 , 

𝜂𝑥𝑦 , 𝜂𝑦𝑥 and 𝜂𝑦𝑦  represent the components of the stress tensor. Here, 𝑈 denotes the injection velocity of the fluid. 

To address the axisymmetric flow case depicted in Fig.1, it is useful to introduce a stream function that inherently satisfies the 

continuity equation as follows: 

𝒱 = 𝑈𝑥2 𝑓(𝜁) ,                                                                                                                                              (5) 

where  𝜁 =
𝑦

𝐿
  the velocity components in the x- and y-directions are then given by: 

𝒱𝑥 =
𝑈𝑥

𝐿
𝑓′(𝜁), 𝒱𝑦 = −2𝑈𝑓(𝜁) .                                                                                                               (6) 

  

Using Equations (5) and (6), the momentum equations are derived as shown in [7]: 

𝑓′′′′ + 2𝑅𝑒𝑓𝑓′′′ − 𝑘 𝑅𝑒(4𝑓′′𝑓′′′ + 2𝑓′𝑓′′′′) = 0                                                                                (7) 

with the boundary conditions: 

𝑓(0) = 𝑓′(0) = 𝑓′(1) = 0, 𝑓(1) = 1 ,                                                                                                    (8) 

and 𝑅𝑒 is the Reynolds number, 𝑘 is the injection Reynolds number. 

2.2 Heat transfer analysis 

In this problem, the dimensionless energy equation, which accounts for viscous dissipation, is expressed as follows [7]: 

𝛶𝒞 (𝒱𝑥

𝜕𝒯
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+ 𝒱𝑥
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) = 𝒦𝛻2𝒯 + 𝜗 ,                                                                                                       (9) 
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here 𝒞, 𝒯,𝒦, and 𝜗 denote the specific heat, temperature, fluid coefficient, and dissipation function, respectively. When the effect 

of viscous dissipation is neglected, the equation simplifies to the following non-dimensional form: 

𝑔′′ − 𝑃𝑟 𝑅𝑒(𝑛 𝑓′ 𝑔 +  𝑓𝑔′) = 0 , 𝑛 = 0,1,2,3,…                                                                               (11) 

subject to the following boundary conditions 

𝑔(0) = 1, 𝑔(1) = 0  .                                                                                                                                (12) 

Here, 𝑃𝑟  represents the Prandtl number, and 𝑛 denotes the power-law index. 

 

3. Approximate Methods Analysis 

3.1. Shehu transformation-Akbari-Ganji method with Padé approximation (SAGPM) 

Is served present a new simulation approach that combines effective, recent approximate analytical techniques: the Shehu 

transformation and the Akbari-Ganji method with Padé approximation (referred to as SAGPM). To summarize the algorithm of 

this method  : 

Consider the following nonlinear partial differential equation expressed in operator form: 

ℒ(𝒰(𝑥, 𝑦, 𝑡)) + ℛ(𝒰(𝑥, 𝑦, 𝑡)) + 𝒩(𝒰(𝑥, 𝑦, 𝑡))  = 𝑧(𝑥, 𝑦, 𝑡)  ,                                                       (13) 

with the initial conditions 

𝒰(𝑥, 𝑦, 0) = 𝑐(𝑥, 𝑦) .                                                                                                                                 (14) 

where, ℒ and ℛ are linear differential operators involving partial derivatives, 𝒩 is a nonlinear operator, and 𝑧(𝑥, 𝑦, 𝑡) represents 

an inhomogeneous term. 

Step 1: Apply the Shehu transformation to both sides of Equation (13) to obtain:  

𝑆[ℒ(𝒰(𝑥, 𝑦, 𝑡))] + 𝑆[ℛ(𝒰(𝑥, 𝑦, 𝑡))] + 𝑆[𝒩(𝒰(𝑥, 𝑦, 𝑡))] = 𝑆[𝑧(𝑥, 𝑦, 𝑡)]                                    (15) 

By applying the differentiation property of the Shehu transformation along with the initial conditions, we obtain 

 𝑆[ℒ(𝒰(𝑥, 𝑦, 𝑡))] =
 𝑢   

𝑣
𝑐(𝑥, 𝑦) +

𝑢

𝑣
𝑆[𝑧(𝑥, 𝑦, 𝑡)] −

𝑢

𝑣
𝑆[ℛ(𝒰(𝑥, 𝑦, 𝑡)) + 𝒩(𝒰(𝑥, 𝑦, 𝑡))]           (16)                   

Step 2: To proceed, we apply the inverse Shehu transformation to both sides of Equation (16), resulting in 

𝒰(𝑥, 𝑦, 𝑡) = 𝑍(𝑥, 𝑦, 𝑡) − 𝑆−1 [
𝑢

𝑣
𝑆[ℛ(𝒰(𝑥, 𝑦, 𝑡)) + 𝒩(𝒰(𝑥, 𝑦, 𝑡))]],                                           (17) 

where  𝑍(𝑥, 𝑦, 𝑡)  represents the term arising from the source term and the prescribed initial conditions. 

Step 3: Next, we represent and as Akbari-Ganji polynomials with constant coefficients, defined as follows 

𝒰(𝑡) = ∑ 𝑎𝑘 

𝑛

𝑘=0

𝑡𝑘                                                                                                                                        (18) 

Substituting these polynomials into Equation (17) converts them to: 

 (∑ 𝑎𝑘 
𝑛
𝑘=0 𝑡𝑘) = 𝑍(𝑥, 𝑦, 𝑡) − 𝑆−1 [

𝑢

𝑣
𝑆[ℛ(∑ 𝑎𝑘 

𝑛
𝑘=0 𝑡𝑘) + 𝒩(∑ 𝑎𝑘 

𝑛
𝑘=0 𝑡𝑘)]]                             (19) 
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Using initial conditions, we determine some coefficients, and by further derivation of equation (23) and substitution of initial 

values, the remaining coefficients 𝑎𝑖 𝑎𝑛𝑑 𝑏𝑖  are obtained. 

Step 4: Finally, we apply the Padé approximation of order [𝑖 / 𝑗] to the power series solution generated by the SAGPM method. 

The values 𝑖 and 𝑗 are chosen as needed to obtain the final solution. 

 

3.2. q-homotopy analysis method, Laplace transform and Padé approximant (q-HALPM) 

 

The algorithm for the new methodology applied to differential equations builds upon the algorithms of the q-Homotopy 

analysis method (q-HAM), Laplace transform method (LTM), and Padé approximation method (PAM) as follows:  

Step 1: Using the q-homotopy analysis method, the equation (13) becomes: 

(1 − 𝑛𝑞)ℒ(𝒰(𝑥, 𝑦, 𝑞) − 𝒰0(𝑥, 𝑦)) − ℎ𝑞𝒩(𝒰(𝑥, 𝑦)) = 0  ,                                                           (20) 

where 𝒰 = ∑ 𝑞𝑘𝒰𝑘
∞
𝑘=0   

By substituting 𝒰 into Equation (20), we obtain a system of Equations in terms of the power series in 𝑞 . Solving this system using 

integration yields the values of 𝒰  

The solution given by: 

 𝜙 = lim
𝑞→

1

𝑛

𝒰 = ∑ 𝒰𝑘
∞
𝑘=0 (

1

𝑛
)𝑘          , 𝑛 ≥ 1 

Step 2: Take LT of 𝜙 , this leads to: 

𝐿[𝜙(𝑡)] = 𝐿 [∑ 𝒰𝑘

∞

𝑘=0

(
1

𝑛
)
𝑘

, 𝑡, 𝑠]                                                                                                             (21) 

Step 3:  We apply the Padé approximation to Equation (21) to obtain: 

𝑃𝑗
𝑖(𝐿[𝜙(𝑠)]) = Padé {𝐿 [𝜙 (

1

𝑠
) , [𝑖, 𝑗]] , 1 ≤ 𝑖, 𝑗 ≤ 𝑖 + 𝑗 + 1}                                                         (22) 

Step 4: Finally, the inverse Laplace transform of Equation (22) is given by, 

𝜙 = 𝐿−1 [𝑃𝑗
𝑖 (𝐿 [𝜙 (

1

𝑠
) , 𝑠, 𝑡])] 

𝜙  is an approximate solution. 

 

3.3. Padé approximant-Yang transform with reduced differential transform method (PYRDTM)  

To consider the nonlinear partial differential Equation in (13) applying present an algorithm for reduced differential transform 

method, referred to as PYRDTM, as described in the steps below: 

Step 1: We apply the Yang transform to both sides of Equation (13) to obtain: 

𝑌[ℒ(𝒰(𝑥, 𝑦, 𝑡))] + 𝑌[ℛ(𝒰(𝑥, 𝑦, 𝑡))] + 𝑌[𝒩(𝒰(𝑥, 𝑦, 𝑡))] = 𝑌[𝑧(𝑥, 𝑦, 𝑡)]  .                                (23) 

Step 2: Applying the inverse Yang transform to both sides of Equation (23) yields: 

𝒰(𝑥, 𝑦, 𝑡) = 𝑍(𝑥, 𝑦, 𝑡) − 𝑌−1[𝑠𝑌[ℛ(𝒰(𝑥, 𝑦, 𝑡)) + 𝒩(𝒰(𝑥, 𝑦, 𝑡))]]   .                                          (24) 

where, 𝑍(𝑥, 𝑦, 𝑡) represents the term generated by the source term and the specified initial conditions. 

Step 3: Next, we apply the reduced differential transform method: 

Ũ0(𝑥, 𝑦) = 𝑍(𝑥, 𝑦, 𝑡)  ,                                                                                                                              (25) 

Ũ𝑛+1(𝑥, 𝑦) = −𝑌−1[𝑠𝑌[ℛ(Ũ𝑛(𝑥, 𝑦, 𝑡)) + 𝒩(Ũ𝑛(𝑥, 𝑦, 𝑡))]]   ,                                                        (26)  

Here, ℛ(Ũ𝑛(𝑥, 𝑦))  and 𝒩(Ũ𝑛(𝑥, 𝑦)) represent the transformations of the functions ℛ(𝒰(𝑥, 𝑦, 𝑡)) and 𝒩(𝒰(𝑥, 𝑦, 𝑡)), respectively. 

This approach combines the Yang transform with the reduced differential transform method. Using the YRDTM, we obtain the 

solution to Equation (13), with the initial condition (14), in the form of an infinite series that converges to the exact solution as 

follows:  

𝒰(𝑥, 𝑦, 𝑡) = ∑Ũ𝑛(𝑥, 𝑦)

∞

𝑗=0

  .                                                                                                                      (27) 

Step 4:  Finally, we apply the Padé approximant of order [𝑖/𝑗] to the power series solution. The values of 𝑖 and 𝑗 are chosen 

arbitrarily. At this stage, the Padé approximant enhances the accuracy and convergence of the truncated series solution by 

expanding the domain of the solution. 

 

4. Applying the approximation methods 

 

In this section, we will apply the three approximate methods to the mathematical model (7,11), in order to clarify the basic steps 

for applying each method as follows: 

4.1. SAGPM: 

Now we will take the model in the Equations (7,11) to apply the method to it as follows: 

By taking Shehu transformation on both sides of (7,11), we get 
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𝐹(𝑣, 𝑢) =
𝒖

𝒗
𝑓(0) +

𝒖𝟐

𝒗𝟐 𝑓′(0) +
𝒖𝟑

𝒗𝟑 𝑓′′(0) +
𝒖𝟒

𝒗𝟒 𝑓′′′(0) +
𝒖𝟒

𝒗𝟒 𝑆[𝑘 𝑅𝑒(4𝑓′′𝑓′′′ + 2𝑓′𝑓′′′′) − 2𝑅𝑒𝑓𝑓′′′] , (28)  

𝐺(𝑣, 𝑢) =
𝒖

𝒗
𝑔(0) +

𝒖𝟐

𝒗𝟐 𝑔′(0) +
𝒖𝟐

𝒗𝟐 𝑆[𝑃𝑟 𝑅𝑒(𝑛 𝑓′𝑔 +  𝑓𝑔′)]  .                                                       (29) 

Applying the inverse Shehu transformation on both sides of (28,29), we get 

𝑓 = 𝑆−1 [
𝒖𝟑

𝒗𝟑
𝑓′′(0) +

𝒖𝟒

𝒗𝟒
𝑓′′′(0) +

𝒖𝟒

𝒗𝟒
𝑆[𝑘 𝑅𝑒(4𝑓′′𝑓′′′ + 2𝑓′𝑓′′′′) − 2𝑅𝑒𝑓𝑓′′′]]                                        (30)  

𝑔 = 1 + 𝑆−1 [
𝒖𝟐

𝒗𝟐 𝑔′(0) +
𝒖𝟐

𝒗𝟐 𝑆[𝑃𝑟 𝑅𝑒(𝑛 𝑓′𝑔 +  𝑓𝑔′)]]                                                                   (31) 

By AGM, we must substitute (18) into (30,31), so, we get 

∑ 𝑎𝑘 

𝑛

𝑘=0

𝑡𝑘 = 𝑆−1

[
 
 
 
 
 
 
 
 
 

𝑢3

𝑣3 𝐴1 +
𝑢4

𝑣4 𝐴2 +
𝑢4

𝑣4 𝑆

[
 
 
 
 
 
 
 
 

𝑘 𝑅𝑒

(

 
 
 

4(∑ 𝑎𝑘 

𝑛

𝑘=0

𝑡𝑘)

′′

(∑ 𝑎𝑘 

𝑛

𝑘=0

𝑡𝑘)

′′′

+2(∑ 𝑎𝑘 

𝑛

𝑘=0

𝑡𝑘)

′

(∑ 𝑎𝑘 

𝑛

𝑘=0

𝑡𝑘)

′′′′

)

 
 
 

−2𝑅𝑒 (∑ 𝑎𝑘 

𝑛

𝑘=0

𝑡𝑘)(∑ 𝑎𝑘 

𝑛

𝑘=0

𝑡𝑘)

′′′

]
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 

   ,         (32) 

∑ 𝑏𝑘 

𝑛

𝑘=0

𝑡𝑘 = 1 + 𝑆−1

[
 
 
 
 
 
 

𝑢2

𝑣2
𝐵 +

𝑢2

𝑣2
𝑆

[
 
 
 
 
 

𝑃𝑟 𝑅𝑒

(

 
 
 

𝑛 (∑ 𝑎𝑘 

𝑛

𝑘=0

𝑡𝑘)

′

(∑ 𝑏𝑘 

𝑛

𝑘=0

𝑡𝑘)

+(∑ 𝑎𝑘 

𝑛

𝑘=0

𝑡𝑘)(∑ 𝑏𝑘 

𝑛

𝑘=0

𝑡𝑘)

′

)

 
 
 

]
 
 
 
 
 

]
 
 
 
 
 
 

   ,                        (33) 

where  𝐴1 = 𝑓′′(0) , 𝐴2 = 𝑓′′′(0)  and  𝐵 = 𝑔′(0) . 

When  𝑛 = 4 , after simplification, Equations (32) and (33) becomes: 

𝛹(𝑓(𝑡)) = 48Ret5a4
2 − 1344Rekt3a4

2 + 60Ret4𝑎3𝑎4 − 1008Rekt2𝑎3𝑎4 + 48Ret3𝑎2𝑎4 + 12Ret3a3
2 − 288Rekt𝑎2𝑎4 − 144Rekta3

2 + ⋯

=  0                                          (34) 

𝛷(𝑔(𝑡)) = 2𝑅𝑒𝑝𝑟𝑎0𝑏1 + 8𝑅𝑒𝑝𝑟𝑡7𝑎4𝑏4 + 8𝑅𝑒𝑝𝑟𝑡6𝑎3𝑏4 + +6 Re pr t6𝑎4𝑏3 + 8 Re pr t5𝑎2𝑏4 + 6 Re pr t5𝑎3𝑏3 + 4 Re pr t5𝑎4𝑏2 + ⋯

= 0                                                          (35) 

The constant coefficients of (34,35) which are  {𝑎0, … , 𝑎4, 𝑏0, … , 𝑏4} can be computed by applying boundary conditions in the form 

of: 

𝑓(0) = 0 ⇒ 𝑎0 = 0  

𝛹(𝑓(0)) ⇒ 𝑎1 = 0  

𝛹′(𝑓(0)) ⇒ 𝑎2 =
8𝑘𝑅𝑒−1+√64𝑅𝑒2𝑘2+32𝑅𝑒𝑘+1

8𝑘𝑅𝑒
  

𝛹′′(𝑓(0)) ⇒ 𝑎3 = −
8𝑘𝑅𝑒−1+√64𝑅𝑒2𝑘2+32𝑅𝑒𝑘+1

4𝑘𝑅𝑒
+ 4  

𝛹′′′(𝑓(0)) ⇒ 𝑎4 =
8𝑘𝑅𝑒−1+√64𝑅𝑒2𝑘2+32𝑅𝑒𝑘+1

8𝑘𝑅𝑒
− 3  

𝑔(0) = 1 ⇒ 𝑏0 = 1  

𝛷(𝑓(0)) ⇒ 𝑏1 =
8𝑁𝑘𝑅𝑒−𝑁+𝑁√64𝑅𝑒2𝑘2+32𝑅𝑒𝑘+1𝑝𝑟−48𝑝𝑟𝑅𝑒𝑁−48𝑘

8𝑁𝑘𝑅𝑒−𝑁+𝑁√64𝑅𝑒2𝑘2+32𝑅𝑒𝑘+1𝑝𝑟−8𝑘𝑅𝑒−1+√64𝑅𝑒2𝑘2+32𝑅𝑒𝑘+1𝑝𝑟+48𝑘
  

𝛷′(𝑔(0)) ⇒ 𝑏2 = 0  

𝛷′′(𝑓(0)) ⇒ 𝑏3 =
8𝑁𝑘𝑅𝑒−𝑁+𝑁√64𝑅𝑒2𝑘2+32𝑅𝑒𝑘+1𝑝𝑟

24𝑘
  

𝛷′′′(𝑓(0)) ⇒ 𝑎4 =
−1

12
(𝑝𝑟𝑅𝑒 (𝑁2𝑝𝑟(8𝑘𝑅𝑒 − 1 + √64𝑅𝑒2𝑘2 + 32𝑅𝑒𝑘 + 1 + ⋯)))  

Then, 

𝑓(𝑡) =
8𝑘𝑅𝑒−1+√64𝑅𝑒2𝑘2+32𝑘𝑅𝑒+1

8𝑘𝑅𝑒
𝑡2 − (

8𝑘𝑅𝑒−1+√64𝑅𝑒2𝑘2+32𝑘𝑅𝑒+1

4𝑘𝑅𝑒
) 𝑡3 + 4𝑡3 +

8𝑘𝑅𝑒−1+√64𝑅𝑒2𝑘2+32𝑘𝑅𝑒+1

8𝑘𝑅𝑒
𝑡4 −

3𝑡4                                                                                                        (36)  

𝑔(𝑡) = 1 +
8𝑁𝑘𝑅𝑒 − 𝑁 + 𝑁√64𝑅𝑒2𝑘2 + 32𝑅𝑒𝑘 + 1pr − 48𝑝𝑟𝑅𝑒𝑁 − 48𝑘

8𝑁𝑘𝑅𝑒 − 𝑁 + 𝑁√64𝑅𝑒2𝑘2 + 32𝑅𝑒𝑘 + 1𝑝𝑟 − 8𝑘𝑅𝑒 − 1 + ⋯
𝑡 +

8𝑁𝑘𝑅𝑒 − 𝑁 + 𝑁√64𝑅𝑒2𝑘2 + 32𝑅𝑒𝑘 + 1𝑝𝑟

24𝑘
𝑡3

+ ⋯                                       (37) 

Now, take the Padé approximant of equation (36) and (37) with [3,4] and [0,4] respectively, we get the approximate solutions of 

the system (7,11): 

𝑓(𝑡)[3,4] =
(0.125000000(1.441792×106𝑅𝑒5𝑘5−2.12992105√64𝑅𝑒2𝑘2+32𝑘𝑅𝑒+1𝑅𝑒4𝑘4+⋯))

1+(1.31072× 105𝑅𝑒5𝑘5−36864√64𝑅𝑒2𝑘2+32𝑘𝑅𝑒+1𝑅𝑒4𝑘4+3840 (64𝑅𝑒2𝑘2+32 𝑘 𝑅𝑒+1)𝑅𝑒3𝑘3+⋯)
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𝑔(𝑡)[0,4] =
(1.0000×1044(576 𝑁2√64𝑅𝑒2𝑘2+32𝑘𝑅𝑒+1𝑅𝑒 𝑘2𝑝𝑟4+13824.𝑁 (64.𝑅𝑅𝑒2𝑘2+32.𝑘 𝑅𝑅𝑒+1)𝑅𝑒 𝑘3𝑝𝑟3+⋯))

5.76000000×1046𝑁2√64𝑅𝑒2𝑘2+32𝑘𝑅𝑒+1𝑅𝑒𝑘2𝑝𝑟4+1.38240000×1048𝑁(64𝑅𝑒2𝑘2+32𝑘𝑅𝑒+1)𝑅𝑒𝑘3𝑝𝑟3+⋯
  

4.2. q-HALPM  

Now, we will take the model in the Equations (7,11) to apply the method to it as follows: 

By applying the q-homotopy property on Equations (7,11), we obtained 

(1 − 𝑛𝑝)[𝐿1(𝑓(𝑡)) − 𝐿1(𝑓0(𝑡))] + ℎ𝑝[𝑓′′′′ + 2𝑅𝑒𝑓𝑓′′′ − 𝑘 𝑅𝑒(4𝑓′′𝑓′′′ + 2𝑓′𝑓′′′′)] = 0      (38) 

(1 − 𝑛𝑝)[𝐿2(𝑔(𝑡)) − 𝐿2(𝑔0(𝑡))] + ℎ𝑝[𝑔′′ − 𝑃𝑟 𝑅𝑒(𝑛 𝑓′ 𝑔 +  𝑓𝑔′)] = 0                                  (39) 

Taking 𝐿1
−1 = ∫ ∫ ∫ ∫ ( . ) 𝑑𝑡𝑑𝑡𝑑𝑡𝑑𝑡

𝑡

0

𝑡

0

𝑡

0

𝑡

0
 and 𝐿2

−1 = ∫ ∫ ( . ) 𝑑𝑡𝑑𝑡
𝑡

0

𝑡

0
  for both sides of Equations (38) and (39) we have:  

𝑓 = 𝑓(0) + 𝑡𝑓′(0) +
𝑡2

2
𝑓′′(0) +

𝑡3

6
𝑓′′′(0) − 𝑝𝐿1

−1[2𝑅𝑒𝑓𝑓′′′ − 𝑘 𝑅𝑒(4𝑓′′𝑓′′′ + 2𝑓′𝑓′′′′)]             (40) 

𝑔 = 𝑔(0) + 𝑡𝑔′(0) + 𝑝𝐿2
−1[𝑃𝑟 𝑅𝑒(𝑛 𝑓′𝑔 +  𝑓𝑔′)]                                                                    (41) 

Now, assuming that 𝑓(𝑡) = ∑ 𝑝𝑖𝜏𝑘(𝑡)∞
𝑘=0  , 𝑔(𝑡) = ∑ 𝑝𝑖𝜇𝑘(𝑡)∞

𝑘=0  , then we get:  

∑ 𝑝𝑖𝜏𝑘(𝑡)

∞

𝑘=0

=
𝑡2

2
𝐴1 +

𝑡3

6
𝐴2 − 𝑝𝐿1

−1

[
 
 
 
 
 
 
 
 

2𝑅𝑒 (∑ 𝑝𝑖𝜏𝑘(𝑡)

∞

𝑘=0

)(∑ 𝑝𝑖𝜏𝑘(𝑡)

∞

𝑘=0

)

′′′

−𝑘 𝑅𝑒

(

 
 
 

4(∑ 𝑝𝑖𝜏𝑘(𝑡)

∞

𝑘=0

)

′′

(∑ 𝑝𝑖𝜏𝑘(𝑡)

∞

𝑘=0

)

′′′

+2(∑ 𝑝𝑖𝜏𝑘(𝑡)

∞

𝑘=0

)

′

(∑ 𝑝𝑖𝜏𝑘(𝑡)

∞

𝑘=0

)

′′′′

)

 
 
 

]
 
 
 
 
 
 
 
 

  ,   (42) 

∑ 𝑝𝑖𝜇𝑘(𝑡)

∞

𝑘=0

= 1 + 𝑡𝐵 + 𝑝𝐿2
−1

[
 
 
 
 
 

𝑃𝑟 𝑅𝑒

(

 
 
 

𝑛 (∑ 𝑝𝑖𝜏𝑘(𝑡)

∞

𝑘=0

)

′

(∑ 𝑝𝑖𝜇𝑘(𝑡)

∞

𝑘=0

)

+(∑ 𝑝𝑖𝜏𝑘(𝑡)

∞

𝑘=0

)(∑ 𝑝𝑖𝜇𝑘(𝑡)

∞

𝑘=0

) ′
)

 
 
 

]
 
 
 
 
 

  ,                          (43) 

where 𝐴1 = 𝑓′′(0), 𝐴2 = 𝑓′′′(0) and 𝐵 = 𝑔′(0) .    

We Equation the terms in Equations (42) and (43) that have the same powers 𝑝 , we get  

𝜏0 = 24𝑅𝑒 (−
1

420
𝑡7 +

1

5
𝑘𝑡5 +

1

120
𝑡6 −

1

2
𝑘𝑡4) +

1

6
(
288

5
𝑘𝑅𝑒 −

108

35
𝑅𝑒) 𝑡3 +

1

2
(−

24

5
𝑘𝑅𝑒 +

26

35
𝑅𝑒) 𝑡2  

𝜇0 = 2𝑅𝑒𝑝𝑟((
1

20
(3𝑁 − 2))𝑡2 + (

1

12
(−6𝑁 + 3))𝑡4 +

1

2
𝑁𝑡3) + (−

3

10
𝑁𝑅𝑒𝑝𝑟 −

3

10
𝑝𝑟𝑅𝑒)𝑡  

𝜏1 = −
48

35
𝑅𝑒2(

1

220
𝑡11 −

1

40
𝑡10 + (

1

3024
(−1848𝑘 + 105))𝑡9 +

11

4
𝑡8𝑘 + ⋯  

𝜇1 = −(
1

35
) 𝑝𝑟𝑅𝑒2 (

1

72
(63𝑁2𝑝𝑟 − 252𝑁 ∗ 𝑝𝑟 − 14𝑁 + 140𝑝𝑟 + 4)) 𝑡9 + ⋯  

𝜏2 = (
4

13475
)𝑅𝑒3 (− (

1051

390
) 𝑡15 + (

1051

52
) 𝑡14 + (

1

17160
(9880640𝑘 − 858550)) 𝑡13) + ⋯  

𝜇2 = (
1

485100
)𝑅𝑒3𝑝𝑟 (

1

156
(72765𝑁3𝑝𝑟2 − 727650𝑁2𝑝𝑟2 − 74382𝑁2𝑝𝑟 + 1908060𝑁𝑝𝑟2 + 223608𝑁𝑝𝑟 − 970200𝑝𝑟2 + 33264𝑁 −

83160𝑝𝑟 − 6048)) 𝑡13 + ⋯  

⋮   

Then the solution of Equations (7,11) is given by substituting the  𝜏𝑘 and 𝜇𝑘 in 

 𝑓(𝑡) = ∑ 𝑝𝑘𝜏𝑘(𝑡)∞
𝑘=0  and  𝑔(𝑡) = ∑ 𝑝𝑘𝜇𝑘(𝑡)∞

𝑘=0  

𝑓(𝑡) = −2𝑡3 + 3𝑡2 + 24𝑅𝑒 (− (
1

420
) 𝑡7 + (

1

5
) 𝑘𝑡5 + (

1

120
) 𝑡6 − (

1

2
) 𝑘𝑡4) + (

1

6
((

288

5
) 𝑘𝑅𝑒 − (

108

35
)𝑅𝑒)) 𝑡3 + (

1

2
(−(

24

5
) 𝑘𝑅𝑒 +

(
26

35
)𝑅𝑒)) 𝑡2 − (

48

35
)𝑅𝑒2 ((

1

220
) 𝑡11 − (

1

40
) 𝑡10 + (

1

3024
(−1848𝑘 + 105)) 𝑡9 + (

11

4
) 𝑡8𝑘 + (

1

840
(18480𝑘2 − 2646𝑘 + 18)) 𝑡7 +

(
1

360
(−27720𝑘2 + 294𝑘 − 20)) 𝑡6 + (

1

120
(11592𝑘2 − 216𝑘)) 𝑡5) + (

1

24
((

8064

5
) 𝑘2𝑅𝑒2 − (

768

7
)𝑅𝑒2𝑘)) 𝑡4 + (

1

6
(− (

8928

175
) 𝑘2𝑅𝑒2 +

(
1448

175
)𝑅𝑒2𝑘 − (

138

539
)𝑅𝑒2)) 𝑡3 + (

1

2
(−(

576

175
) 𝑘2𝑅𝑒2 + (

32

35
)𝑅𝑒2𝑘 + (

416

13475
)𝑅𝑒2)) 𝑡2 + ⋯   

𝑔(𝑡) = −𝑡 + 1 + 2 𝑅𝑒 𝑝𝑟 (
1

20
(3 𝑛 − 2)𝑡5 +

1

12
(−6 𝑛 + 3)𝑡4 +

1

2
𝑛 𝑡3) + (−

3

10
𝑛 𝑅𝑒 𝑝𝑟 −

3

10
𝑝𝑟 𝑅𝑒) 𝑡 −

1

35
𝑅𝑒2𝑝𝑟 (

1

72
(63 𝑛2𝑝𝑟 −

252 𝑛 𝑝𝑟 − 14 𝑛 + 140 𝑝𝑟 + 4)𝑡9 +
1

56
(−273 𝑛2𝑝𝑟 + 1022 𝑛 𝑝𝑟 + 56 𝑛 − 490 𝑝𝑟 − 14)𝑡8 +

1

42
(420 𝑛2𝑝𝑟 + 840 𝑛 𝑘 − 1365 𝑛 𝑝𝑟 −

42 𝑛 − 336 𝑘 + 420 𝑝𝑟)𝑡7 +
1

30
(−210 𝑛2𝑝𝑟 − 2520 𝑛 𝑘 + 630 𝑛 𝑝𝑟 + 840 𝑘)𝑡6 +

1

20
(−63 𝑛2𝑝𝑟 + 2688 𝑛 𝑘 − 21 𝑛 𝑝𝑟 − 54 𝑛 −

672 𝑘 + 42 𝑝𝑟 + 36)𝑡5 +
1

12
(63 𝑛2𝑝𝑟 − 1176 𝑛 𝑘 + 80 𝑛 + 168 𝑘 − 63 𝑝𝑟 − 26)𝑡4 +

1

6
(168 𝑛 𝑘 − 26 𝑛)𝑡3) + (

11

350
𝑅𝑒2𝑝𝑟2𝑛2 +

2

175
𝑅𝑒2𝑝𝑟 𝑛 𝑘 +

11

175
𝑅𝑒2𝑝𝑟2𝑛 −

101

6300
𝑅𝑒2𝑝𝑟 𝑛 +

2

175
𝑅𝑒2𝑝𝑟 𝑘 +

2

1575
𝑅𝑒2𝑝𝑟2 −

101

6300
𝑅𝑒2𝑝𝑟) 𝑡 + ⋯  

Now, by taken Laplace transform of 𝑓 and 𝑔 afterward us reception Padé approximate we have  

𝐹(𝑠)[3,3] =
𝐴1

𝐴2
  and, 𝐺(𝑠)[3,3] =

𝐴3

𝐴4
 , where   
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𝐴1 = (230473242313767578125(−1296 − (
22464

35
)𝑅𝑒 − (

95080416

6131125
)𝑅𝑒3 + (

497664

875
)𝑘3𝑅𝑒3 + (

8771328

67375
)𝑘2𝑅𝑒3 … 

𝐴2 = (𝑠3(−18490538983344553125000𝑅𝑒 +
1

𝑠
(−50256336723962118750 𝑅𝑒 − 107111464121762100 𝑅𝑒3 + ⋯ 

𝐴3 = (1607678790968250(
1

𝑠
(12 + (

52

35
)𝑅𝑒 − 24𝑁 − (

2312396

13138125
)𝑁4𝑅𝑒5𝑘𝑝𝑟3 − (

259380500326

724963379765625
)𝑁3𝑅𝑒7𝑘𝑝𝑟2 + ⋯ 

𝐴4 = −28296199081069920000𝑁4𝑅𝑒5𝑘𝑝𝑟3 − 57520219752293760𝑁3𝑅𝑒7𝑘𝑝𝑟2 − 385842909832380000𝑁 + ⋯ 

Later, taking invers Laplace transformation for 𝐹(𝑠)[3,3] and 𝐺(𝑠)[3,3] to get :  

𝑓(𝑡) =
9

6131125
(

𝑒𝛼𝑡

30542914321920000𝑅𝑒6𝑘6𝛼2−8144777152512000𝑅𝑒6𝑘6𝛼−20487552269184000𝑅𝑒6𝑘5𝛼2+⋯
)   

Where 

 𝛼 = √15087864712032470790432𝑅𝑒3𝑘3 − 51253676771771974500𝑅𝑒3 + ⋯ 

𝑔(𝑡) =
1

63063000
(𝑒𝛼𝑡(−243324114227593799400 + (−250815176775998050986𝑁12𝑅𝑒11𝑝𝑟11 −

1340994494806326958752𝑁11𝑅𝑒11𝑘𝑝𝑟10 + ⋯ )  

Where 

 𝛼 = √−6469616557853729280𝑁4𝑅𝑒5𝑘𝑝𝑟3 − 747291790964759040𝑁3𝑅𝑒7𝑘𝑝𝑟2 + ⋯  

 

4.3. PYRDTM  

We have the final method to apply it to the mathematical model in the Equations (7,11) as follows 

Applying the Yang transform to both sides of Equation (7,11) under the initial condition given in Equations (8,12), we obtain 

𝐹(𝑠) = 𝑠𝑓(0) + 𝑠2𝑓′(0) + 𝑠3𝑓′′(0) + 𝑠4𝑓′′′(0) + 𝑠4𝑌[𝑘 𝑅𝑒(4𝑓′′𝑓′′′ + 2𝑓′𝑓′′′′) − 2𝑅𝑒𝑓𝑓′′′],      (44) 
𝐺(𝑠) = s𝑔(0) + 𝑠2𝑔′(0) + 𝑠2𝑌[𝑃𝑟 𝑅𝑒(𝑛 𝑓′𝑔 +  𝑓𝑔′)] .                                                                (45) 

By performing the inverse Yang transform on Equation s (44,45), we obtain: 

𝑓 =
1

2
𝑡2𝐴1 +

1

6
𝑡3𝐴2 + 𝑌−1[𝑠4𝑌[𝑘 𝑅𝑒(4𝑓′′𝑓′′′ + 2𝑓′𝑓′′′′) − 2𝑅𝑒𝑓𝑓′′′]]  ,                            (46) 

𝑔 = 1 + 𝑡B + 𝑌−1[𝑠2𝑌[𝑃𝑟 𝑅𝑒(𝑛 𝑓′𝑔 +  𝑓𝑔′)]]  ,                                                                            (47) 

where 𝐴1 = 𝑓′′(0) , 𝐴2 = 𝑓′′′(0)  and 𝐵 = 𝑔′(0) . 

By utilizing the reduced differential transform method on Equation s (46,47), we obtain: 

𝐹𝑘+1 =
1

2
𝑡2𝐴1 +

1

6
𝑡3𝐴2 

+𝑌−1

[
 
 
 
 
 
 
 
 
 

𝑠4𝑌

[
 
 
 
 
 
 
 
 

𝑘 𝑅𝑒

(

 
 
 

4 ∑𝐹𝑟+2(𝑟 + 1)(𝑟 + 2)

𝑘

𝑟=0

𝐹𝑘−𝑟+3(𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)(𝑘 − 𝑟 + 3)

+2 ∑𝐹𝑟+1(𝑟 + 1)𝐹𝑘−𝑟+4(𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)(𝑘 − 𝑟 + 3)(𝑘 − 𝑟 + 4)

𝑘

𝑟=0 )

 
 
 

−2𝑅𝑒 ∑𝐹𝑟

𝑘

𝑟=0

𝐹𝑘−𝑟+3(𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)(𝑘 − 𝑟 + 3)
]
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 

 

(48) 

𝐺𝑘+1 = 1 + 𝑡B + 𝑌−1

[
 
 
 
 
 
 

𝒔𝟐𝑌

[
 
 
 
 
 

𝑃𝑟 𝑅𝑒

(

 
 
 

𝑛 ∑ 𝐹𝑘−𝑟+1(𝑘 − 𝑟 + 1)

𝑘

𝑟=0

 𝐺𝑟

+ ∑ 𝐺𝑘−𝑟+1(𝑘 − 𝑟 + 1)

𝑘

𝑟=0

 𝐹𝑟
)

 
 
 

]
 
 
 
 
 

]
 
 
 
 
 
 

                                        (49) 

With 𝐹0 = 0, 𝐹1 = 0,𝐹2 = 1.361107895𝑡2, 𝐹3 = .2657143550𝑡3 and 

 𝐺0 = 1,𝐺1 = −1.338712981𝑡 . 

Then from the Equation s (48,49), we get  

𝐹0 = 0  

𝐹1 = 0  

𝐹2 = 1.361107895𝑡2  

𝐹3 = 0.2657143550𝑡3  

𝐹4 = 2.893327251𝑘𝑅𝑒𝑡6  

𝐹5 = 126.0201781𝑅𝑒2𝑘2𝑡9 + 1.452427580𝑅𝑒𝑘𝑡7  
⋮   
𝐺0 = 1  

𝐺1 = −1.338712981𝑡  
𝐺2 = 0  

𝐺3 = 0.9074052633𝑝𝑟𝑅𝑒𝑁𝑡3   
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𝐺4 = −(0.7117806375(𝑁 − 1.279982000))𝑝𝑟𝑅𝑒𝑡4  

𝐺5 = 1.653329857𝑝𝑟𝑅𝑒2𝑡7𝑁𝑘 − (0.2134291539(𝑁 − .6666666662))𝑝𝑟𝑡5𝑅𝑒   

⋮  

The solutions series obtained by YRDTM is  

𝑓 = ∑ 𝐹𝑘

∞

𝑘=0

= 1.361107895𝑡2 + 0.2657143550𝑡3 + 2.893327251𝑘𝑅𝑒𝑡6 + 126.0201781𝑅𝑒2𝑘2𝑡9 + 1.452427580𝑅𝑒𝑘𝑡7

+ 13722.16474𝑅𝑒3𝑡12𝑘3 + 267.2783193𝑅𝑒2𝑡10𝑘2 + ⋯                                                                                  (50) 

𝑔 = ∑ 𝐺𝑘

∞

𝑘=0

= 1 − 1.338712981𝑡 + 0.9074052633𝑝𝑟𝑅𝑒𝑁𝑡3 − (0.7117806375(𝑁 − 1.279982000))𝑝𝑟𝑅𝑒𝑡4

+ 1.653329857𝑝𝑟𝑅𝑒2𝑡7𝑁𝑘 − (0.2134291539(𝑁 − 0.6666666662))𝑝𝑟𝑡5𝑅𝑒 + ⋯                                      (51) 

Now, take the Padé approximant of Equation (50), with     𝑖 = 3  ,   𝑗 = 4, and take the Padé approximant of equation.  (51), with     

𝑖 = 0  ,   𝑗 = 4  we  get the solutions of the system (7,11) as  

𝑓(𝑡)[3,4] =
𝐵1 

𝐵2
   and,  𝑔(𝑡)[0,4] =

1

𝐵3
 , where 

𝐵1 = (8 × 1034(9.930423493𝑅𝑒𝑘 − 2.482605873𝑅𝑒)
𝑡2

5.836670865×1035𝑅𝑒𝑘−1.459167716×1035𝑅𝑒−3.987953234×1032
+ ⋯   

𝐵2 = 1 + (−1.790532934 × 1035𝑅𝑒𝑘 − 4.069393031 × 1033𝑅𝑒)
𝑡

5.836670865×1035𝑅𝑒𝑘−1.459167716×1035𝑅𝑒−3.987953234×1032
+ ⋯  

𝐵3 = 1 + (−1.717729773𝑝𝑟𝑅𝑒𝑁 − 0.9110664039𝑝𝑟𝑅𝑒 + 3.211810388)𝑡4 + (2.399177743 − 0.9074052633𝑝𝑟𝑅𝑒𝑁)𝑡3 + ⋯  

 

5. Results and discussion  

Three new existing approximation methods were used to solve the problem of turbine disk cooling by non-Newtonian 

fluid flow in the porous wall of an axisymmetric channel (Figure 1). Approximate solutions were obtained, and Tables (3-8) show 

the results obtained using these methods. Tables (1) and (2) also show a comparison of errors between the three methods in 

addition to CHPM [13]. the results obtained from the three methods indicate that the q-homotopy approach demonstrates 

superior efficiency in terms of both accuracy and convergence rate. This method achieved negligible or nearly zero errors, 

underscoring its effectiveness. In contrast, although the other methods produced satisfactory outcomes, they did not achieve the 

same level of precision and computational efficiency exhibited by the q-homotopy method. Converging from Figures 3 and 4, we 

can see that the Reynolds number (Re) and the cross-viscosity parameter (k) have the same effect on the velocity, as their 

increase leads to an increase in the velocity in the  

y-direction, and the maximum velocity in the x-direction tends to the warm plate (y=0). Figure 5 shows the effect of Reynolds 

number (𝑅𝑒), cross-linked viscosity parameter (𝑘), Prandtl number (𝑝𝑟), and power law index (𝑛) on the temperature distribution. 

This figure shows that the higher it is, the lower the temperature distribution. 

Table 1.  Comparison of the error between the methods mentioned below for 𝑓  

𝑀𝑒𝑡ℎ𝑜𝑑 𝑅𝑒 𝑘 𝐿2 𝐿∞ 

 

 SAGPM 

0.01 

0.1 

0.5 

1 

0.01 

0.01 

0.1 

0.1 

0.1063837916 

0.3552495559 

0.1227072354e-2 

0.1063837916 

0.103819950 

0.346688068 

0.1197500e-2 

0.103819950 

 

 q-HALPM 

0.01 

0.1 

0.5 

1 

0.01 

0.01 

0.1 

0.1 

7.631673732 × 10−6 

0.9539592179e-4 

2.168888355 × 10−9 

0.2168888355e-3 

0.1451228316𝑒 − 5 

0.1814035398e-3 

3.746156400 × 10−9 

0.3746156400e-3 

 

 PYRDTM 

0.01 

0.1 

0.5 

1 

0.01 

0.01 

0.1 

0.1 

0.9349148830e-2 

0.4674574417e-1 

0.9349148830e-4 

0.9349148830e-2 

0.2893327251e-1 

0.1446663626 

0.2893327251e-3 

0.2893327251e-1 

 

 CHPM 

0.01 

0.1 

0.5 

1 

0.01 

0.01 

0.1 

0.1 

0.5099801859e-2 

0.5241776027e-1 

0.6039242226e-3 

0.5099801859e-2 

0.170090314e-1 

0.1759097868 

0.1663236059e-2 

0.170090314e-1 

 

 

Table 2.  Comparison of the error between the methods mentioned below for 𝑔  

𝑀𝑒𝑡ℎ𝑜𝑑 𝑛 𝑅𝑒 𝑘 𝑝𝑟 𝐿2 𝐿∞ 

 

Error of SAGPM 

1 

2 

3 

0.01 

0.1 

0.5 

0.01 

0.01 

0.1 

0.01 

0.1 

0.5 

0.1416985076e-2 

0.1125645185 

0.1117074541e-3 

0.4480900250e-2 

0.2906403369 

0.2497854610e-3 
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4 1 0.1 1 1.803927948 3.607855897 

 

Error of q-HALPM 

1 

2 

3 

4 

0.01 

0.1 

0.5 

1 

0.01 

0.01 

0.1 

0.1 

0.01 

0.1 

0.5 

1 

7.055130671 × 10−8 

0.3291961245e-4 

6.772011223 × 10−13 

0.2482841529e-1 

3.155150354 × 10−6 

0.1313888698e-3 

2.304450836 × 10−13 

0.8070223202e-1 

 

Error of PYRDTM 

1 

2 

3 

4 

0.01 

0.1 

0.5 

1 

0.01 

0.01 

0.1 

0.1 

0.01 

0.1 

0.5 

1 

2.785103254 × 10−7 

0.2870523545e-5 

1.412773954 × 10−7 

0.7278036682e-3 

1.245536040 × 10−7 

0.1281237178e-4 

6.197894764 × 10−7 

0.3097689834e-2 

 

Error of CHPM 

1 

2 

3 

4 

0.01 

0.1 

0.5 

1 

0.01 

0.01 

0.1 

0.1 

0.01 

0.1 

0.5 

1 

0.2179985094e-2 

0.2132580049 

0.1171542426e-3 

3.649711398 

0.5945262275e-2 

0.5851376107 

0.3211343167e-3 

10.12419691 

Now we will review the problem diagrams for each method as follows: 

6.1. SAGPM: 

 

 

 

 

 

 

 

 

 

 

 

(b) (a) 

Fig.2: The impact of the Reynolds number on the 𝑦-direction(a) and 𝑥-direction(b) velocity components for 𝑘 =

 0.01 and 𝑘 =  0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

(b) (a) 

Fig.3: The impact of the 𝑅𝑒, 𝑛,  𝑝𝑟 and 𝑘 on the temperature distribution components.  

 

6.2. q-HALPM  
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(b) (a) 

Fig.4: The impact of the Reynolds number on the 𝑦-direction(a) and 𝑥-direction(b) velocity components for 𝑘 =

 0.01 and 𝑘 =  0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

(b) (a) 

Fig.5: The impact of the 𝑅𝑒, 𝑛,  𝑝𝑟 and 𝑘 on the temperature distribution components. 

 

6.3. PYRDTM 

 

 

 

 

 

 

 

 

 

 

 

(b) (a) 

Fig.6: The impact of the Reynolds number on the 𝑦-direction(a) and 𝑥 −direction(b) velocity components for 𝑘 =

 0.01 and 𝑘 =  0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

(b) (a) 

Fig.7: The impact of the 𝑅𝑒, 𝑛,  𝑝𝑟 and 𝑘 on the temperature distribution components . 

 

5. Convergent analysis  

In this section, we perform a convergence analysis of the approximate analytical solution derived using the three 

methods. To achieve this, we study a system of nonlinear ordinary differential Equations, represented by equations 

(7) and (11) as follows: 

𝑓(𝑡) = 𝐹(𝑓(𝑡), 𝑔(𝑡))

𝑔(𝑡) = 𝐺(𝑓(𝑡), 𝑔(𝑡))
}                                                                                                                           (52) 

Where  𝐹  and  𝐺 are non-linear operators. The solutions of the model using the three methods above are equation 
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univalent to the following equation  

𝒮𝑛1
=  ∑ 𝓊𝑘 

𝑛1

𝑘=0

                                                                                                                                         (53) 

ℳ𝑛2
= ∑ 𝓋𝑘 

𝑛2

𝑘=0

                                                                                                                                       (54) 

Theorem 5.1 (Convergence of the Turbine Disk Cooling Problem) 

Let 𝐹 and 𝐺 be operators mapping a Hilbert space 𝐻 into 𝐻 itself, and let 𝑓 and 𝑔 represent the exact solutions of 

equations (7) and (11), respectively. The approximate solutions, ∑ 𝓊𝑘 
𝑛1
𝑘=0  , and  ∑ 𝓋𝑘 

𝑛2
𝑘=0   converge to the exact 

solutions , 𝑓 and 𝑔, respectively ,when under the conditions ,  ∃  0 ≤ 𝜗 < 1 , ‖𝓊𝑘+1‖ ≤ 𝜗‖𝓊𝑘‖ , ∀𝑘 ∈ ℕ ∪

{0}  and  ∃  0 ≤ 𝛿 < 1 , ‖𝓋𝑘+1‖ ≤ 𝛿‖𝓋𝑘‖ , ∀𝑘 ∈ ℕ ∪ {0} .  

Proof: First, we demonstrate that for 𝑓,  

‖𝒮𝑛1+1 − 𝒮𝑛1
‖ = ‖𝓊𝑛1+1‖ ≤ 𝜗‖𝓊𝑛1

‖ ≤ 𝜗2‖𝓊𝑛1−1‖ ≤ ⋯ ≤ 𝜗𝑛1‖𝓊1‖

≤ 𝜗𝑛1+1‖𝓊0‖.                                                                                                              (55) 

Now for 𝑛1 ,𝑚1 ∈ ℕ , 𝑛1 ≥ 𝑚1 ,we have  

‖𝒮𝑛1
− 𝒮𝑚1

‖ = ‖(𝒮𝑛1
− 𝒮𝑛1−1) + (𝒮𝑛1−1 − 𝒮𝑛1−2) + ⋯+ (𝒮𝑚1+1 − 𝒮𝑚1

)‖ 

                      ≤ ‖𝒮𝑛1
− 𝒮𝑛1−1‖ + ‖𝒮𝑛1−1 − 𝒮𝑛1−2‖ + ⋯+ ‖𝒮𝑚1+1 − 𝒮𝑚1

‖ 

                      ≤ 𝜗𝑛1‖𝓊0‖ + 𝜗𝑛1−1‖𝓊0‖ + ⋯+ 𝜗𝑚1+1‖𝓊0‖  

                      ≤ (𝜗𝑚1+1 + 𝜗𝑚1+2 + ⋯+ 𝜗𝑛1)‖𝓊0‖ =

𝜗𝑚1+1 1−𝜗𝑛1+𝑚1

1−𝜗
‖𝓊0‖                                                                                                                          (56)   

Hence , lim
𝑛1,𝑚1→∞

‖𝒮𝑛1
− 𝒮𝑚1

‖ = 0 , this mean {𝒮𝑛1
}𝑛1

∞  is a Cauchy sequence in the Hilbert space ,then there exists 𝒮 ∈

𝐻 , such that lim
𝑛1,→∞

𝒮𝑛1
= 𝒮 , where 𝒮 = 𝑓 . 

The proof for 𝑔 follows a similar procedure.                                                                               ■ 

 

According to Theorem 5.1, the convergence of the approximate solutions depends on calculating the parameter 

values 𝜗𝑛1 to satisfy the following relationship: 

𝜗𝑛1 = {

‖𝓊𝑛1+1‖

‖𝓊𝑛1
‖

 , ‖𝓊0‖ ≠ 0,    𝑛1 = 2,3,4,…

0         ,                         otherwise          

                                                                       (57) 

where 𝜗 =
‖𝓊𝑛1+1‖

‖𝓊𝑛1‖
< 1 . 

By applying the above relationship, the convergence of the solutions produced by the three methods can now be 

determined as follows: 

 

 

5.1.  SAGPM: 

Table 3. convergence of analytical approximate solutions for 𝑓    

𝑅𝑒 𝑘 𝜗1 𝜗2 

0.01 0.01 0.6661342321 0.5994678626e-3 

0.1 0.01 0.6613963051 0.5976403537e-2 

0.5 0.1 0.4924501523 0.2653311922 

1 0.1 0.4000000000 0.2000000000 

 

 

Table 4. convergence of analytical approximate solutions for 𝑔 

𝑅𝑒 𝑘 𝑝𝑟 𝑛 𝛿1 𝛿2 

0.01 0.01 0.01 1 0.9995508360e-4 0.4993762712e-4 

0.1 0.01 0.1 2 0.1982147479e-1 0.1481270174e-1 

0.5 0.1 0.5 3 0.5710889259 0.4320339489 

1 0.1 1 4 2.250000000 1.925000000 
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6. Conclusions : 

In this work, three major techniques—SAGPM, q-HALPM, and PYRDTM—are applied to find the solutions of the turbine 

disk cooling problem. The investigations consider the influences of the significant parameters, such as injection Reynolds 

number (Re), the cross-viscosity parameter (k), the Prandtl number (Pr), and the power-law exponent (n), on the speed and 

temperature distributions. The results reveal that an increase in the Reynolds number increases the velocity with more 

pronounced curvature and a drop in temperature distribution. For small Reynolds numbers, the velocity reaches its maximum at 

the center of the channel. Besides, larger Prandtl numbers and power-law exponents lead to a conspicuous decline in 

temperature distribution. 

The q-HALPM had better convergence and accuracy compared to SAGPM and PYRDTM, as seen in Tables 1 and 2. The 

comparison showed that all three methods were reliable, but q-HALPM always had the lowest error rates. These results 

demonstrate that such methods can be powerful tools in the solution of complicated fluid flow problems and in developing 

applications in engineering and applied sciences. It is also found that an increase in the cross-linking viscosity parameter causes 

acceleration, while a decrease in temperature spread causes deceleration. 
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5.2.  q-HALPM: 

Table 5. convergence of analytical approximate solutions for 𝑓    

𝑅𝑒 𝑘 𝜗1 𝜗2 

0.01 0.01 0.2840512145e-3 0.2722483140e-5 

0.1 0.01 0.2840512145e-2 0.2722483140e-3 

0.5 0.1 0.1288934946 0.8783299435e-2 

1 0.1 0.2577869893 0.3513319775e-1 

 

 

Table 6. convergence of analytical approximate solutions for 𝑔 

𝑅𝑒 𝑘 𝑝𝑟 𝑛 𝛿1 𝛿2 

0.01 0.01 0.01 1 0.4212753274e-3 0.1127772672e-5 

0.1 0.01 0.1 2 0.1096140060e-2 0.3654942119e-3 

0.5 0.1 0.5 3 0.9592202424e-1 0.1333512589e-1 

1 0.1 1 4 0.5568706417 0.3632358743 

 

 

5.3.  PYRDTM: 

Table 7. convergence of analytical approximate solutions for 𝑓    

𝑅𝑒 𝑘 𝜗1 𝜗2 

0.01 0.01 0.2496906195e-2 0.2045291406e-3 

0.1 0.01 0.2496504310e-1 0.2951371679e-2 

0.5 0.1 0.1247309475 0.3493991610e-1 

1 0.1 0.2492034521 0.1203148005 

 

 

Table 8. convergence of analytical approximate solutions for 𝑔 

𝑅𝑒 𝑘 𝑝𝑟 𝑛 𝛿1 𝛿2 

0.01 0.01 0.01 1 0.1109341948e-4 1.074331209e-8 

0.1 0.01 0.1 2 0.2218683896e-2 0.2762812641e-4 

0.5 0.1 0.5 3 0.8320064605e-1 0.8249945618e-2 

1 0.1 1 4 0.4437367791 0.1043710034 
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