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| ABSTRACT 

We compute the size of a minimal nilpotent cover for small alternating and symmetric groups, An and Sn. We give precise values 

for values of n up to 8. For n=9 we give upper and lower bounds for the size of a minimal nilpotent cover of  A9. 
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1. Introduction 

In this paper we calculate the least number of nilpotent subgroups of the symmetric group on n letters Sn that are 

necessary to cover Sn, for values of n up to and including 9. We also perform similar calculations for the alternating group An. 

To explain our results in more detail, consider a finite group G. A nilpotent cover of G is a finite family M of nilpotent 

subgroups of G for which 

G = ⋃𝐻 . 

A. H∈M 

Every finite group G has a nilpotent cover comprising the family of cyclic subgroups of G. A nilpotent cover M of G is said to 

be minimal if no other nilpotent cover of G has fewer members. Let ΣN(G) denote the size of a minimal nilpotent cover of G. 

Notice that if G is itself nilpotent, then {G} is the unique minimal nilpotent cover of G and ΣN(G) = 1. 

When calculating the minimal size of a nilpotent cover, we can immediately restrict our attention to the maximal nilpotent 

subgroups of G. Here a maximal nilpotent subgroup of G is a subgroup of G that is maximal with respect to inclusion in the 

class of nilpotent subgroups of G. 

This paper should be seen as a companion to the paper [GKS22] which, as we will see below, gave a formula for ΣN(Sn); on 

the other hand this same paper showed that the treatment given there did not apply neatly to the groups An. 

2. Symmetric groups 

Theorem 1.1 of [GKS22] asserts that there is unique minimal cover of Sn by maximal nilpotent subgroups. In order to give 

the size of this cover, we define a distinct partition of a positive integer n to be a set T = {t1,t2,...,tk}, where t1,t2,...,tk are distinct 

positive integers and n = t1 + t2 + ··· + tk. Let us write DP(n) for the set of all distinct partitions of n. We then have 
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In this expression 𝑡 = 𝑝1
𝑎1𝑝2

𝑎2⋯𝑝ℓ
𝑎ℓ is the prime factorisation of t (which depends on t) and 𝑒𝑖 = (𝑝𝑖

𝑎𝑖 − 1)/(𝑝𝑖 − 1) for i = 

1,2,...,ℓ. The product 

∏(𝑝𝑖 − 1)𝑎𝑖

ℓ

𝑖=1

𝑝𝑖
𝑒𝑖 

 

is considered to take the value 1 if t = 1. Table 2.1 displays the first few values of DP(n) and ΣN(Sn). 

n DP(n) ΣN(Sn) 

 

Table 2.1. Values of DP(n) and ΣN(Sn), for n = 2,3,...,9. 

3. Alternating groups 

For the alternating groups, no formula is known for the minimal size of a nilpotent cover. Table 3.1 displays the first few 

values of ΣN(An); these were first calculated in the first author’s PhD thesis. We justify the numbers given there below. 

 

Table 3.1. Values of ΣN(An), for n = 2,3,...,9. 

First, when n = 2 or 3, the group An is itself nilpotent, hence ΣN(An) = 1. When n = 4, the Sylow subgroups of An are maximal 

and, because they are pgroups, they nilpotent. What is more, every element of A4 lies in a unique Sylow subgroup. Thus we 

just need to count Sylow subgroups of A4: there are five in total and the result follows. 

3.1. Cases n ≥ 5. From here on, the situation is more complicated. We seek to construct a minimal cover, 𝒞, of G = An by 

maximal nilpotent subgroups. Our strategy will be as follows: 

(i) First, we list all conjugacy classses of the group G = An. 

(ii) We enumerate those conjugacy classes, C1, for which there exists another class, C2, such that elements of C1 are powers of 

elements in C2. When we are constructing a nilpotent cover it will therefore be sufficient to ensure that all elements of C2 

are contained in an element of the cover, as this will automatically 
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imply that elements of C1 are similarly contained. 

(iii) Now let g be an element of a conjugacy class that does not contain powers of another class. We compute those maximal 

nilpotent subgroups of G that contain g. In many cases we find that there is only one such maximal nilpotent subgroup, 

Ng, and in that case Ng must be contained in the nilpotent cover, 𝒞. 

(iv) Where there is more than one such maximal nilpotent subgroup, further calculations are required. 

Tables 3.2 to 3.6 summarise the situation. The notation we use is as follows: 

(i) Label gives a name for each conjugacy class of G = An; recall that a conjugacy class in An is determined by cycle type unless 

that cycle type consists of distinct odd numbers, in which case the class splits in two (so we use labels “a” and “b”) and we 

list the two corresponding conjugacy classes on the same row. 

(ii) element gives an element from the conjugacy class(es) on the given row. 

(iii) power of gives a conjugacy class of which the current class is a power, if such exists. 

(iv) subgroup gives the unique maximal nilpotent subgroup N of G that contains a given element from this current class, should 

such a group exist. Note that we only need to list such groups for classes that do not have an entry in the power of column. 

Our notation here is largely standard; note that Pp,n denotes a Sylow p-subgroup of An. In some cases, it turns out that the 

same group N can be the unique maximal nilpotent subgroup containing elements from more than one conjugacy class 

(e.g. for class Cl3 and Cl4 in A6). In this case we write the subgroup N in parenthesis for one of these classes, to ensure that 

it is not counted twice; entries after the parenthetic entry will then be empty. 

(v) number gives the number of conjugates of the group N.  

(vi) structure gives the isomorphism class of the group N. 

3.2. Cases n = 5,6,7. In this case, every single conjugacy class either has an entry in the power of column or in the subgroup 

column. As a consequence, the set of all conjugates of groups in the subgroup column is a minimal cover of maximal nilpotent 

subgroups. Hence the size of this cover is given by summing the entries in the number column. This yields the values given in 

Table 3.1. 

Note that, in this case, as for n = 3,4,5, there is a unique cover of G = An by maximal nilpotent subgroups. What is more, 

this cover is a union of conjugacy classes of subgroups (and so is known in the literature as a normal cover). 

3.3. Case n = 8. In this case there is one conjugacy class that has no entry in the power of column and in the subgroup 

column, namely the class, Cl8, of elements with cycle type 4 − 4. However, in this case, the class, Cl7, of elements with cycle type 

4 − 2 contains elements which lie in a unique maximal nilpotent subgroup, namely a Sylow 2-subgroup of G = A8. Since the 

union of all the Sylow 2-subgroups contains all elements of cycle type 4 − 4, we find that the listed subgroups already yield a 

minimal cover of maximal nilpotent subgroups. 
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Thus, as before, the size of this cover is given by summing the entries in the number column. This yields the value 3571 

given in Table 3.1. As before, this cover is unique and normal. 

3.4   Case n = 9. In this case, once again, there is one conjugacy class that has no entry in the power of column and in the 

subgroup column, namely the class, Cl10, of elements with cycle type 4 − 4. This time, though, this class is not contained in the 

union of subgroups given in the subgroup column. 

Since the centralizer of an element in Cl10 is a 2-group, a maximal nilpotent subgroup that contains an element of this class 

must be a Sylow 2-subgroup. The difficulty is that, for any given element g in this class, there are 7 Sylow 2-subgroups 

containing g. 

So a minimal cover of A9 by maximal nilpotent subgroups must contain the 28120 listed subgroups – the union of these 

groups contains all conjugacy classes in A9 apart from Cl10 – as well as some of the 2835 Sylow 2-subgroups of A9. We obtain 

the bounds given in Table 3.1. 
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Table 3.2. Constructing a minimal nilpotent cover of A5 

 

 

 

 

 

Table 3.3. Constructing a minimal nilpotent cover of A6 

 

 

 

 

 

 

                                                

Table 3.4. Constructing a minimal nilpotent cover of A7 
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Table 3.5. Constructing a minimal nilpotent cover of A8 

Label element power of subgroup number structure 

Label element power of subgroup number structure 

Label element power of subgroup number structure 

Label element power of subgroup number structure 
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Label element power of subgroup number structure 

Cl1 (1) All - - - 

Cl2 (1,2)(3,4) Cl8 - - - 

Cl3 (1,2)(3,4)(5,6)(7,8) Cl10 - - - 

Cl4 (1,2,3) Cl5 - - - 

Cl5 (1,2,3)(4,5)(6,7) Cl9 - - - 

Cl6 (1,2,3)(4,5,6) Cl14 - - - 

Cl7 (1,2,3)(4,5,6)(7,8,9) Cl16 - -  

Cl8 (1,2,3,4)(5,6) Cl9 - - - 

Cl9 (1,2,3,4)(5,6,7)(8,9) - P2,6 × P3,3 3780 D8 × C3 

Cl10 (1,2,3,4)(5,6,7,8) - - ? - 

Cl11 (1,2,3,4,5) Cl12 - - - 

Cl12 (1,2,3,4,5)(6,7)(8,9) - P5,5 × P2,4 756 C5 × C2 × C2 

Cl13a,13b (1,2,3,4,5)(6,7,8) - P5,5 × P3,3 3024 C5 × C3 

Cl14 (1,2,3,4,5,6)(7,8) - C6 15120 C6 

Cl15 (1,2,3,4,5,6,7) - P7,7 4320 C7 

Cl16a,16b (1,2,3,4,5,6,7,8,9) - P3,9 1120 C3 ≀ C3 

Total    28120+?  

Table 3.6. Constructing a minimal nilpotent cover of A9 

4. Final remark 

It is interesting to compare the values given in Table 3.1 with Sequence A218964 of [OEI25] which enumerates the total 

number of maximal nilpotent subgroups of the alternating groups An. Up to n = 7, the two sequences coincide. 

Note that the just-cited sequence from [OEI25] is a corrected version of a sequence first appearing in [NP13]. 
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