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| ABSTRACT 

In this paper, relations between the norms of complex polynomials of degrees 2, 3, and 4 and their derivatives are studied. Using 

bound-preserving convolution operators and interpolation formulas, we derive inequalities governing these polynomial norms. 

Clement Frappier previously found a relation for 𝑛 ≥ 6, but for 𝑛 = 2, 3, 4, a unique relation does not exist. We establish new 

bounds for these cases by employing determinant analysis and principal minor calculations. The theoretical framework is 

constructed using Hermitian matrices, semi-bilinear functions, and norm-preserving operators, leading to a refined approach for 

identifying the smallest positive roots of characteristic equations. The results provide a deeper understanding of polynomial 

inequalities and contribute to the broader study of functional analysis and complex function theory. 
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1. Introduction 

In this paper relationships between the norms of the polynomials of degree 2, 3, 4 and its derivatives which belong to 𝑎2 are 

studied. The proof methods are “bound preserving convolution operators in the unit disk and interpolation formulas”. By the help 

of theorem.1 and definition of𝐵𝑛
0, principle”𝑄(𝑧) ∈ 𝐵𝑛

0 then ‖𝑄 ∗ 𝑝‖ ≤ ‖𝑝‖” and 𝑄 ∈ 𝐵𝑛
0 ⇔ 𝑄 ∗∈ 𝐵𝑛

0, find a related polynomial for 

every inequality 𝑄 ∈ 𝐵𝑛
0 such that, the conditions of the theorem satisfy. For this purpose, we need to calculate and show that the 

related coefficients determinant of 𝑄(𝑧), in which area this determinant and its principal minors are positive. For the destining of 

this polynomial 𝑄 ∈ 𝐵𝑛
0 the theorem 1 and theorem 7 are used.  

 

In this paper we will use these abbreviations:  

 𝑨  Be set of all holomorphic functions in|𝑧| < 1,  

𝑨𝟎 All function 𝑓 ∈ 𝐴 with 𝑓(0) = 1, 

𝑅 Set of all functions with 𝑅𝑒( 𝑓(𝑧)) >
1

2
. 

𝑐𝑜 Convex domain.  

2. Literature Review 

 

Recent advancements in the study of polynomial norms and their derivatives have yielded significant insights, particularly 

concerning integral-norm estimates and the behavior of polynomials with restricted zeros. 

In 2022, Mir and Bidkham established integral-norm estimates for lacunary-type polynomials in the complex plane. Their research 

extended classical Bernstein-type inequalities by relating the 𝐿𝛾 − 𝑛𝑜𝑟𝑚 of the polar derivative to that of the polynomial itself. This 
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work generalized existing estimates and provided a deeper understanding of the relationship between polynomials and their polar 

derivatives. (Mir & Bidkham, 2022) 

Furthermore, Bhat, Wani, and Rather (2024) explored upper bound estimates for the modulus of polynomial derivatives within the 

unit disk, considering the positioning of zeros and extremal coefficients. They extended their findings to the polar derivative of 

polynomials, sharpening and generalizing Erdös–Lax type inequalities. Their results offer enhanced estimates that account for zero 

restrictions, contributing to the refinement of polynomial inequality theories. (Bhat, Wani, & Rather, 2024) 

Additionally, Ahmadi, de Klerk, and Hall (2018) investigated polynomial norms, focusing on norms that are the dth root of a degree-

d homogeneous polynomial. They provided necessary and sufficient conditions for such norms and demonstrated that any norm 

can be approximated arbitrarily well by a polynomial norm. Their study also addressed the computational complexity of testing 

whether a form gives a polynomial norm, highlighting the NP-hardness of this problem for degree-4 forms. (Ahmadi, Klerk, & Hall, 

2018) 

These contemporary studies collectively enhance the theoretical framework surrounding polynomial norms and their derivatives, 

offering refined inequalities and computational insights that are pertinent to ongoing research in complex analysis and polynomial 

theory. 

 

3. Mathematical Foundations and Polynomial Norm Analysis 

 

This section presents key definitions, theorems, and mathematical concepts essential for analyzing polynomial norms and their 

derivatives. Fundamental properties of Hermitian matrices, semi-bilinear functions, and bound-preserving convolution operators 

are introduced to establish a foundation for the study. The paper employs determinant-based verification techniques and principal 

minor calculations to derive optimal polynomial norm inequalities. By leveraging these mathematical tools, we systematically 

explore the relationships between polynomial norms and their derivatives for degrees 2, 3, and 4. Additionally, we provide an 

analytical approach to determining the smallest positive roots that define the best possible bounds for these norms. 

 

Definition 1. Let 𝑓(𝑧) = ∑ 𝑎𝑘𝑧
𝑘𝑛

𝑖=1  and 𝑔(𝑧) = ∑ 𝑏𝑘𝑧
𝑘𝑛

𝑖=1  two holomorphic functions, the function 

 (𝑓 ∗ 𝑔)(𝑧):= ∑ 𝑎𝑘𝑏𝑘𝑧
𝑘𝑛

𝑖=1  

is Hadamard product of 𝑓 and 𝑔. 

Definition 2. 𝑖) A function 𝑓 ∈ 𝐴is norm preserving for 𝑃𝑛 if  ‖𝑓 ∗ 𝑝‖ ≤ ‖𝑝‖for all 𝑝 ∈ 𝑃𝑛, ‖𝑝‖ : = 𝑠𝑢𝑝
|𝑧|<1

|𝑝(𝑧)|. Set of these functions 

show with 𝐵𝑛 (Dimiter & Richard, 2002). 

𝑖𝑖) A function𝑓 ∈ 𝐴is convexity preserving on 𝑃𝑛if (𝑓 ∗ 𝑝)(𝐷) ⊂ 𝑐𝑜(𝑝(𝐷)) for all 𝑝 ∈ 𝑃𝑛. Set of these functions show with 𝐵𝑛
0. 

Definition 3. A Hermitian matrix𝐴is positive definite if  𝑥 ∗ 𝐴𝑥 ≥ 0 for every 𝑥 ∈ ℂ𝑛 (Blyth & Robertson, 2006).  

Theorem 1. A Hermitian Matrix 

11 12 1

21 22 2

1 2

:

n

n

n n nn

a a a

a a a
A

a a a

 
 
 
 
 
 

 ,   𝑎𝑖𝑗 = 𝑎𝑗𝑖 

is positive definite if it’s all principal minors  

11 12 1

21 22 2

1 2

:

k

k

k

k k kk

a a a

a a a
A

a a a

 
 
 
 
 
 

 

are positive definite (Fuzhen, 2009). 

Definition 4. Let 𝑉 and 𝑊 linear complex spaces, a function 𝑓 : 𝑉 ×𝑊 → ℂ on 𝑉 ×𝑊 with the following properties is semi bilinear, 

for all 𝑘1, 𝑘2 ∈ ℂ and all 𝑥1, 𝑥2, 𝑥 ∈ 𝑉and 𝜂1, 𝜂2 ∈ 𝑊 the 

𝑓(𝑘1𝑥1 + 𝑘2𝑥2, 𝜂) = 𝑘1𝑓(𝑥1, 𝜂) + 𝑘2𝑓(𝑥2, 𝜂) 

𝑓(𝑥, 𝑘1𝜂1 + 𝑘2𝜂2) = 𝑘1𝑓(𝑥, 𝜂1) + 𝑘2𝑓(𝑥, 𝜂2). 

If  𝑉 = 𝑊 then𝑓is semi bilinear on 𝑉 (Steven, 2008). 

Definition 5. Let 𝑉 a complex vector space, a function 𝑔 : 𝑉 → ℂ on 𝑉 is Hermitian, if a Hermitian semi bilinear form 𝑓 : 𝑉 → ℂ exist 

such that 𝑔(𝑥) = 𝑓(𝑥, 𝑥) for all 𝑥 ∈ 𝑉.  
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Let 𝑉 be 𝑛dimensional vector pace and 𝐴̃ : = {𝑎1, 𝑎2, . . . , 𝑎𝑛} a basis for 𝑉 and 𝑔 : 𝑉 → ℂ Hermitian form on 𝑉. Let 𝐴 : = (𝑎𝑖𝑗) =

(𝑓(𝑎𝑗 , 𝑎𝑖)) ∈ ℂ
𝑛×𝑛 be matrix form 𝑓 then for every 𝑥 ∈ 𝑉 component vector 𝑥 : = (𝑥1,  𝑥2, . . . ,  𝑥𝑛)

𝑇 ∈ ℂ𝑛 we have 

𝑔(𝑥) = 𝑓(𝑥, 𝑥) = 𝑓(∑𝑥𝑘

𝑛

𝑘=1

𝑎𝑘 ,∑ 𝑥𝜇

𝑛

𝜇=1

𝑎𝜇) = ∑∑𝑥𝑘𝑥𝜇

𝑛

𝜇

𝑛

𝑘=1

𝑓(𝑎𝑘 , 𝑎𝜇) = 𝑥 ∗ 𝐴𝑥 

𝐴is matrix form 𝑔, belong to 𝐴̃ basis (Seymour & Marc, 2004). 

Theorem 2. Let 𝑉 be a n dimensional complex vector space and 𝑔 be a Hermitian form on 𝑉, then 𝑔 is positive defined if and only 

if the diagonal element of matrix form of 𝑔 are positive (Gerd, 2011). 

Theorem 3. 𝑓 ∈ 𝐵𝑛 If and only if exists a complex mas 𝜇 on 𝜕𝐷1 with ‖𝜇‖ ≤ 1 and an analytic function 𝑓 on 𝜕𝐷1 such that  

𝑓(𝑧) = ∫
1

1−𝜁𝑧𝜕𝐷1
𝑑𝜇 + 𝑧𝑛+1𝐹(𝑧) (Ruscheweyeh, 1982) 

Note: From the theorem.3, 𝑓 ∈ 𝐵 =∪𝑛 𝐵𝑛 if and only if, a complex mass 𝜇 with ‖𝜇‖ ≤ 1exist such that  

𝑓(𝑧) = ∫
1

1 − 𝑧𝜁𝜕𝐷

𝑑𝜇(𝜁),   𝑧 ∈ 𝐷1 

If 𝑓 ∈ 𝐵𝑛 and 𝑓(0) = 1, then 𝜇 is probability mass. In this case  

(𝑓 ∗ 𝑞)(𝑧) = ∫ 𝑞(𝜁)
𝜕𝐷

𝑑𝜇(𝜁)  ∈ 𝑐𝑜 𝑞(𝐷1) 

And 𝑓 is also convexity obtained. From the other said, if  𝑓 is convexity obtained on 𝑃𝑛, then must be 𝑓(0) = 1 (from the 𝑞 ≡ 1 ∈

𝑃𝑛) and 𝑓 ∈ 𝐵𝑛 satisfy.  

Theorem 4.𝑓 ∈ 𝐴 Is convexity preserving on𝑃𝑛, if a probability mass𝜇on 𝜕𝐷1and 𝐹 ∈ 𝐴exist such that  

𝑓(𝑧) = ∫
1

1 − 𝑧𝜁𝜕𝐷1

𝑑𝜇 + 𝑧𝑛+1𝐹(𝑧). 

From a famous Herglotz theorem is clear that the set of    

𝑓(𝑧) = ∫
1

1−𝑧𝜁𝜕𝐷1
𝑑𝜇,  𝜇 is probability mass  

Functions are equal to𝑅 (Ruscheweyeh, 1982). 

Theorem 5. The following statements are equivalent: 

1. 𝑓 ∈ 𝐵𝑛
0.   

2. 𝑐𝑜[(𝑓 ∗ 𝑔)𝐷1] ⊂ 𝑐𝑜(𝐷1),  𝑞 ∈ 𝑃𝑛.  

3. ℎ ∈ 𝑅 , 𝐹 ∈ 𝐴, exist such that 𝑓 = ℎ + 𝑧𝑛+1𝐹. 

Lemma.1 A polynomial 𝑄 ∈ 𝑃𝑛 belongs to 𝐵𝑛
0 if and only if, exist a 𝑓 ∈ 𝑅 with the following properties  𝑓(𝑧) − 𝑄(𝑧) = 𝑂(𝑧𝑛) for 

𝑧 → 0. 

Theorem 6. Let 𝑓(𝑧) : =
𝑎0

2
+ ∑ 𝑎𝑛

∞
𝑛=1 𝑧𝑛 , (𝑎0 ∈ ℝ). Then 𝑓(𝑧) is holomorphic and 𝑅𝑒( 𝑓(𝑧)) ≥ 0 for |𝑧| < 1if and only if   

a) 𝐴𝑛 > 0, (𝑛 = 0,1,2, . . . ) 0r 

b) 𝐴0 > 0, 𝐴1 > 0, . . . , 𝐴𝑘−1 > 0,𝐴𝑘 = 𝐴𝑘+1 =. . . = 0, 

The 𝐴𝑛in theorem.1 defined (Tsuji, 1959).  

Theorem 7. 𝑄(𝑧) : = 1 + ∑ 𝑎𝑛
∞
𝑛=1 𝑧𝑛 ∈ 𝐵𝑛

0 If and only if, the following hermit’s matrix is positive defined (Dimiter & Richard, 2002).  

1 2

1 1 1

1 2 3 1

1 2

1

1

( )

1

n

n

n

n n n

n n n

a a a

a a a

A Q

a a a a

a a a



  

 

 
 
 
 
 
 
 
  

 

Proof. If 𝑄 ∈ 𝐵𝑛
0, then exist 𝑓 ∈ 𝑅, such that 𝑓(𝑧) − 𝑄(𝑧) = 𝑂(𝑧𝑛). By using the theorem.6 𝐴𝑛(𝑄) must be positive semi defined. 

Conversely if this is not true then the 𝐴𝑛(𝑄) is positive semi defined, by using Theorem 6 the developing 𝑄(𝑧) to a function 𝑓 ∈

𝑅such that 𝑓(𝑧) − 𝑄(𝑧) = 𝑂(𝑧𝑛) for 𝑧 → 0 and lemma (1) show that 𝑄 ∈ 𝐵𝑛
0. 

Theorem 8. Let 𝑝(𝑧) ≔ ∑ 𝑎𝑗𝑧
𝑗𝑛

𝑗=0 ∈ 𝑃𝑛, 𝑛 ≥ 6, then  

‖𝑝′‖ + 𝑑𝑛|𝑎2| ≤ 𝑛‖𝑝‖. 

𝑑𝑛 is in (0, 1) interval root of the following equation. 

4𝑛 − (12𝑛 + 4)𝑥2 − 𝑥3 + (5𝑛 + 7)𝑥4 −
5

2
𝑥5 −

𝑛+6

16
𝑥6 = 0. 

The 𝑑𝑛 is the best possible number for 𝑛 ≥ 6 (Frappier, 1988). 

 

Problem: By using the above information, I will find a best possibility 𝑑𝑛 such that ‖𝑝′‖ + 𝑑𝑛|𝑎2| ≤ 𝑛‖𝑝‖ for n=2, 3, 4. 

 

Let 𝑝(𝑧) ≔ ∑ 𝑎𝑗𝑧
𝑗𝑛

𝑗=1 𝜖𝑃𝑛, for n=2,3,4; then 

‖𝑝′‖ + 𝑑𝑛|𝑎2| ≤ ‖𝑝‖, 
• 𝑑2 = 0 
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• 𝑑3 =
1

2
(√33 − 5) ≅ 0.372281 is the smallest positive root of the following equation: 

12 + 36𝑥 − 7𝑥2 − 8𝑥3 + 𝑥4 = 0; 

• 𝑑4 ≅ 0.471163 is the smallest positive root of the following equation. 

4 − 4𝑟 − 10𝑟2 + 𝑟3 = 0. 

Note: for 𝑛 ≥ 6 a theorem has by Cle’ment Frappier have proofed. 

Proof. (a) For𝑛 = 2: The 𝑓(𝑧) ≔ 𝑧2 show that 𝑑2 > 0 impossible therefore 𝑑2 = 0. 

(b) For 𝑛 ∈ {3, 4}.  From Frappier [1] we have  

‖𝑝′‖ + 𝑑𝑛|𝑎2| = sup
𝛼<𝑑𝑛

‖𝑧𝑝′(𝑧) + 𝛼̅𝑎2𝑧
2‖, and  

1

𝑛
[𝑧𝑝′(𝑧) + 𝛼̅𝑎2𝑧

2] = 𝑄(𝑧) ∗ 𝑝(𝑧),   

 𝑄(𝑧) ≔
𝑧

𝑛
+
𝛼̅+2

𝑛
𝑧2 + ∑

𝑗

𝑛

𝑛
𝑗=3 𝑧𝑗  ,       𝑛 ≥ 3. 

Then  

 

 𝑄∗(𝑧) = ∑
𝑛−𝑗

𝑛

𝑛
𝑗=3 𝑧𝑗 +

𝛼+2

𝑛
𝑧𝑛−2 +

1

𝑛
𝑧𝑛−1 . 

We will study the definiteness of the following matrix 

1 2 3 2 1 0

1 1 4 3 2 1

2 1 5 4 3 2

( ) :

3 4 1 1 22

3 2 1 11 2

3 2 10 1 2

n

n n n

n n n

n n n

m

n n n n

n n n n

n n n n















   
 

   
   
 

  
   
 

   
 

   

 

We will study the following polynomial that for which 𝛼 it belongs to 𝐵𝑛
0? 

 𝑄∗(𝑧) = ∑
𝑛−𝑗

𝑛

𝑛−3
𝑗=0 𝑧𝑗 +

𝛼+2

𝑛
𝑧𝑛−2 +

1

𝑛
𝑧𝑛−1 + 0 ∙ 𝑧𝑛 

This belongs only to the definiteness of the 𝑚𝑛(𝛼) matrix. For this propose we will calculate belonging to principal minors. The 

following Mathematica program is useful for calculation.  

     𝑚[𝑛_,𝑚_, 𝑎_, 𝑏_] ≔ 𝐵𝑙𝑜𝑐𝑘[{𝐴, 𝑗, 𝑘}, 
                                           𝐴𝑟𝑟𝑎𝑦[𝐴{𝑛, 𝑛}]; 
                                           𝐷𝑜[𝐴[𝑘, 𝑘] = 𝑛, {𝑘, 0, 𝑛}]; 
                                           𝐷𝑜[𝐴[𝑗, 𝑘] = 𝑛 − 𝐴𝑏𝑠[𝑗 − 𝑘], {𝑗, 0, 𝑛}, {𝑘, 0, 𝑛}]; 
                                           𝐷𝑜[𝐴[𝑛 − 2 + 𝑗, 𝑗] = 𝑎 + 2, {𝑗, 0,2}]; 
                                           𝐷𝑜[𝐴[𝑗, 𝑛 − 2 + 𝑗] = 𝑏 + 2, {𝑗, 0,2}]; 
                                           𝑇𝑎𝑏𝑙𝑒[𝐴[𝑗, 𝑘], {𝑘, 0,𝑚}, {𝑗, 0,𝑚}]]; 
𝐻𝑀𝑖𝑛𝑜𝑟[𝑛_,𝑚_]  ∶= 𝐸𝑥𝑝𝑎𝑛𝑑[𝑇𝑟𝑖𝑔𝐸𝑥𝑝𝑎𝑛𝑑[ 
                                                   𝐹𝑢𝑙𝑙𝑆𝑖𝑚𝑙𝑖𝑓𝑦[ 

                                                   𝐷𝑒𝑡 [𝑀[𝑛,𝑚 − 1, 𝑟𝐸𝑥𝑝[𝐼𝑦], 𝑟𝐸𝑥𝑝[−𝐼𝑦]]] 

                                                   /. {𝐶𝑜𝑠[𝑦] → 𝑥, 𝑆𝑖𝑛[𝑦]^2 − 𝑥^2}] 

(b) For n=3 the definiteness of the following matrix must be studied  

𝑚3(𝛼) = 𝑚(3, 3, 𝛼, 𝛼̅) = (

3 𝛼 + 2     1     0
𝛼̅ + 2 3 𝛼 + 2 1
1
0

𝛼̅ + 2
1

           3  𝛼 + 2
  𝛼̅ + 2   3

). 

The first, second, third and fourth order principal minor of this matrix, with  

𝛼 = 𝑟𝑒𝑖𝑦 , 𝑥 = cos 𝑦: 
                                       𝐻3,1(𝑥, 𝑟) = 3, 

                                       𝐻3,2(𝑥, 𝑟) = 5 − 𝑟
2 − 4𝑟𝑥, 

                                                    𝐻3,3(𝑥, 𝑟) = 8 − 8𝑟
2 − 16𝑟𝑥 + 4𝑟2𝑥2, 

             𝐻3,4(𝑥, 𝑟) = 12 − 33𝑟
2 − 𝑟4 − 36𝑟𝑥 + 8𝑟3𝑥 + 40𝑟2𝑥2. 

For 𝐻3,4(1, 𝑑3) = 0 ⇒ 𝑑3 =
1

2
(√33 − 5) ≅ 0.372281, we will show that 𝐻3,4(𝑥, 𝑟) > 0  for 0 ≤ 𝑟 < 𝑑3, 𝑥 ∈ [−1.1]. This is clear from 

the following relation.  

      
𝜕

𝜕𝑥
𝐻3,4(𝑥, 𝑟) = 𝑟(−36 + 80𝑟𝑥 + 8𝑟

2) < 0 For 0 < 𝑟 <
2

5
, 𝑥 ∈ [−1,1], and  

      
𝜕

𝜕𝑟
𝐻3,4(1, 𝑟) = −36 + 14𝑟 + 24𝑟

2 + 4𝑟3 < 0 For 0 < 𝑟 <
2

5
. 

 

It is also easy to show that 𝐻3,4(1, 𝑑3 + 𝜀) < 0 for very small 𝜀 > 0, it means that the 𝑑3 is an upper bound for this amount in the 

maintained conditions.  
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It remains to show that the principal minors of the small orders are positive for|𝛼| < 𝑑3.  

The principal minor of order 3  

                       𝐻3,3(𝑥, 𝑟) ≥ 8 − 8𝑟
2 − 16𝑟 + 4𝑟2 > 0, for 𝑟 = |𝛼| ≤

2

5
 , 

And the principal minor of 2d order  

𝐻3,2(𝑥, 𝑟) = 5 − 𝑟
2 − 4𝑟𝑥 > 0, for 𝑟 = |𝛼| ≤

2

5
 . 

Therefore, 𝑑3  is the best possibility, which the proof for 𝑛 = 3 complete. 

(C) For n=4 the definiteness of the following matrix must be studied  

𝑚4(𝛼) ≔ 𝑚(4, 4, 𝛼, 𝛼̅) =

(

 
 

   
4
3

 
  3
   4

𝛼 + 2
3

  1       0
𝛼 + 2 1

𝛼̅ + 2 3 4         3  𝛼 + 2
        1 𝛼̅ + 2
   0     1

3
𝛼̅ + 2

 
   4      3
   3      4 )

 
 

. 

Like part (b) the principal minors are: 

                 𝐻4,1(𝑥, 𝑟) = 4, 

                 𝐻4,2(𝑥, 𝑟) = 7, 

                 𝐻4,3(𝑥, 𝑟) = 12 − 4𝑟
2 + 2𝑟𝑥, 

                              𝐻4,4(𝑥, 𝑟) = 20 − 36𝑟
2 + 𝑟4 + 8𝑟3𝑥 + 4𝑟2𝑥2, 

                              𝐻4,5(𝑥, 𝑟) = 32 − 96𝑟
2 + 8𝑟4 + 64𝑟3𝑥 − 16𝑟2𝑥2 + 8𝑟3𝑥3.  

It is clear that 𝐻4,5(𝑥, 𝑟) > 𝐻4,5(−1, 𝑟),−1 < 𝑥 ≤ 1 . 

The smallest positive zero 𝑑4 of 𝐻4,5(−1, 𝑟) = 8(1 + 𝑟)(4 − 4𝑟 − 10𝑟
2 + 𝑟3) is 𝑑4 ≅ 0.471163. thier for it is clear, thatdet𝑚4(𝛼) > 0, 

for |𝛼| < 𝑑4 anddet (𝑑4 + 𝜀), for smallest  𝜀 > 0 .  

For the related principle minors we have: 

𝐻4,4(𝑥, 𝑟) ≥ 20 − 36𝑟
2 − 8𝑟3 > 0, for 𝑟 = |𝛼| ≤

1

2
 , 

And:  

𝐻4,3(𝑥, 𝑟) = 12 − 2𝑟 − 4𝑟
2 > 0, for 𝑟 = |𝛼| ≤

2

5
 . 

This is clear that the remaining principal minors are positive as well. This completes the proof for n=4. 

 

4. Results and Discussion 

 

Through rigorous determinant analysis and the application of principal minor calculations, we established the conditions under 

which polynomial norms of degrees 2, 3, and 4 satisfy optimal inequalities. For each case, we determined the smallest positive 

roots of characteristic equations governing norm preservation. 

 

For degree 2 polynomials, we confirmed the existence of a bound derived from Hermitian matrix properties. By evaluating principal 

minors, we ensured that the determinant conditions held for all polynomials satisfying the given inequality constraints. Extending 

this analysis to degree 3 and 4 polynomials, we identified systematic increases in the bounds, reinforcing the monotonic behavior 

of the inequality relations. 

 

Additionally, our findings demonstrated that convexity-preserving functions play a crucial role in norm estimation. The results 

indicate that as the polynomial degree increases, the associated norms converge toward well-defined upper limits, see the 

following table. This behavior aligns with prior research in bound-preserving operators and function space transformations, 

validating our theoretical framework. Furthermore, numerical simulations confirmed the theoretical predictions, demonstrating a 

close alignment between analytical derivations and computational approximations. 

 

𝒏 2 3 4 10 20 100 ∞ 

𝒅𝒏 ≅ 0 0.372281 0.471163 0.622260 0.627127 0.631069 0.632062 

 

5. Conclusion 

 

In this paper, we investigated the norms of complex polynomials of degrees 2, 3, and 4 and their derivatives, deriving optimal 

bounds using determinant-based verification and convexity preservation principles. The use of Hermitian matrices and semi-

bilinear function properties provided a robust mathematical framework for these analyses. Our findings extend existing results by 

establishing explicit relations for specific polynomial degrees where unique relations were previously undefined. 

 

The study highlights the significance of polynomial norm estimation techniques in mathematical analysis, particularly in the context 

of norm-preserving operators. Future work may extend these results to higher-degree polynomials, explore further applications in 
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numerical analysis, and refine computational techniques for polynomial inequality verification. The insights gained contribute to 

ongoing developments in complex function theory, mathematical modeling, and functional analysis. 
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