On Absolute Valued Algebras Containing a Central Algebraic Element

Authors

  • Abdelhadi Moutassim Centre Régional des Métier de l’Education et de la Formation, Casablanca-Settat Annexe Provinciale Settat, Morocco

DOI:

https://doi.org/10.32996/jmss.2023.4.2.4

Keywords:

Absolute valued algebra, pre-Hilbert algebra, algebraic element, central element.

Abstract

Let  be an absolute valued algebra containing a nonzero central algebraic element. Then  is a pre-Hilbert algebra and is finite dimensional in the following cases:

1) A satisfies (x, x, x)=0.

2) A satisfies (x2, x2 , x2 )=0.

3) A satisfies (x, x2, x)=0.

In these cases  is isomorphic to  or . It may be conjectured that every absolute valued algebra containing a nonzero central element is pre-Hilbert algebra.

Downloads

Published

2023-04-20

Issue

Section

Research Article

How to Cite

Moutassim, A. (2023). On Absolute Valued Algebras Containing a Central Algebraic Element. Journal of Mathematics and Statistics Studies, 4(2), 38-42. https://doi.org/10.32996/jmss.2023.4.2.4